# Why do people hate maths?

September 8, 2017 2 Comments

New Scientist 3141 ( 2 Sept 2017) has the cover splash ‘Your mathematical mind: Why do our brains speak the language of reality?’. The article (p 31) is titled ‘The origin of mathematics’.

I have made pedantic comments on previous articles on similar topics, to be told that the author’s intentions have been slightly skewed in the editing process. Maybe it has again. But some interesting (to me) points still arise.

Firstly, we are told that brain scans showthat:

a network of brain regions involved in mathematical thought that was activated when mathematicians reflected on problems in algebra, geometry and topology, but not when they were thinking about non-mathsy things. No such distinction was visible in other academics. Crucially, this “maths network” does not overlap with brain regions involved in language.

It seems reasonable to suppose that many people do not develop such a maths capability from experience in ordinary life or non-mathsy subjects, and perhaps don’t really appreciate its significance. Such people would certainly find maths stressful, which may explain their ‘hate’. At least we can say – contradicting the cover splash – that most people lack a mathematical mind, which may explain the difficulties mathematicians have in communicating.

In addition, I have come across a few seemingly sensible people who may seem to hate maths, although I would rather say that they hate ‘pseudo-maths’. For example, it may be true that we have a better grasp on reality if we can think mathematically – as scientists and technologists routinely do – but it seems a huge jump – and misleading – to claim that mathematics is ‘the language of reality’ in any more objective sense. By pseudo-maths I mean something that appears to be maths (at least to the non-mathematician) but which uses ordinary reasoning to make bold claims (such as ‘is the language of reality’).

But there is a more fundamental problem. The article cites Ashby to the effect that ‘effective control’ relies on adequate models. Such models are of course computational and as such we rely on mathematics to reason about them. Thus we might say that mathematics is the language of effective control. If – as some seem to – we make a dichotomy between controllable and not controllable systems then mathematics is the pragmatic language of reality. Here we enter murky waters. For example, if reality is socially constructed then presumably pragmatic social sciences (such as economics) are necessarily concerned with control, as in their models. But one point of my blog is that the kind of maths that applies to control is only a small portion. There is at least the possibility that almost all things of interest to us as humans are better considered using different maths. In this sense it seems to me that some people justifiably hate control and hence related pseudo-maths. It would be interesting to give them a brain scan to see if their thinking appeared mathematical, or if they had some other characteristic networks of brain regions. Either way, I suspect that many problems would benefit from collaborations between mathematicians and those who hate pseudo-mathematic without necessarily being professional mathematicians. This seems to match my own experience.

“The article cites Ashby to the effect that ‘effective control’ relies on adequate models. Such models are of course computational and as such we rely on mathematics to reason about them. Thus we might say that mathematics is the language of effective control.”

But what is the language of effective control? What does control do? What is it controlling?

The brain’s language is simple functionally but complex in that it involves parallel processing along distinct neural pathways. It is effective not because symbolic mathematics adequately defines its function but because an adequate number of power transmissions are directed to the same end.

What control does is prevent itself or others doing some things so energy is directed to other things. It is effective only insofar as enough parallel processes are directed to the same end.

What it is controlling is what Claude Shannon saw more clearly than Weiner and Ashby. It is not controlling anything specific. It is directing functionally redundant energy into controlling errors as they arise. More or less what Keynes was attempting, in fact. Infrastructure maintenance.

Brilliant! Can you point me to any references that I might find accessible and useful and which I might point others who may be sympathetic to this view but not (yet) so insightful?

And is there a link to our apparent inability to update key infrastructure that relies on concurrency ‘control’, such as financial transaction systems and signalling systems?

I’m just off to lunch with a few old ex RSRE folk and may drop your name.