Mathematical modelling

I had the good fortune to attend a public talk on mathematical modelling, organised by the University of Birmingham (UK). The speaker, Dr Nira Chamberlain CMath FIMA CSci, is a council member of the appropriate institution, and so may reasonably be thought to be speaking for mathematicians generally.

He observed that there were many professional areas that used mathematics as a tool, and that they generally failed to see the need for professional mathematicians as such. He thought that mathematical modelling was one area where – at least for the more important problems – mathematicians ought to be involved. He gave examples of modelling, including one of the financial crisis.

The main conclusion seemed very reasonable, and in line with the beliefs of most ‘right thinking’ mathematicians. But on reflection, I wonder if my non-mathematician professional colleagues would accept it. In 19th century professional mathematicians were proclaiming it a mathematical fact that the physical world conformed to classical geometry. On this basis, mathematicians do not seem to have any special ability to produce valid models. Indeed, in the run up to the financial crash there were too many professional mathematicians who were advocating some mainstream mathematical models of finance and economies in which the crash was impossible.

In Dr Chamberlain’s own model of the crash, it seems that deregulation and competition led to excessive risk taking, which risks eventually materialised. A colleague who is a professional scientist but not a professional mathematician has advised me that this general model was recognised by the UK at the time of our deregulation, but that it was assumed (as Greenspan did) that somehow some institution would step in to foreclose this excessive risk taking. To me, the key thing to note is that the risks being taken were systemic and not necessarily recognised by those taking them. To me, the virtue of a model does not just depend on it being correct in some abstract sense, but also that ‘has traction’ with relevant policy and decision makers and takers. Thus, reflecting on the talk, I am left accepting the view of many of my colleagues that some mathematical models are too important to be left to mathematicians.

If we have a thesis and antithesis, then the synthesis that I and my colleagues have long come to is that important mathematical model needs to be a collaborative endeavour, including mathematicians as having a special role in challenging, interpret and (potentially) developing the model, including developing (as Dr C said) new mathematics where necessary. A modelling team will often need mathematicians ‘on tap’ to apply various methods and theories, and this is common. But what is also needed is a mathematical insight into the appropriateness of these tools and the meaning of the results. This requires people who are more concerned with their mathematical integrity than in satisfying their non-mathematical pay-masters. It seems to me that these are a sub-set of those that are generally regarded as ‘professional’. How do we identify such people?

Dave Marsay 

 

Uncertainty is not just probability

I have just had published my paper, based on the discussion paper referred to in a previous post. In Facebook it is described as:

An understanding of Keynesian uncertainties can be relevant to many contemporary challenges. Keynes was arguably the first person to put probability theory on a sound mathematical footing. …

So it is not just for economists. I could be tempted to discuss the wider implications.

Comments are welcome here, at the publisher’s web site or on Facebook. I’m told that it is also discussed on Google+, Twitter and LinkedIn, but I couldn’t find it – maybe I’ll try again later.

Dave Marsay

Instrumental Probabilities

Reflecting on my recent contribution to the economics ejournal special issue on uncertainty (comments invited), I realised that from a purely mathematical point of view, the current mainstream mathematical view, as expressed by Dawid, could be seen as a very much more accessible version of Keynes’. But there is a difference in expression that can be crucial.

In Keynes’ view ‘probability’ is a very general term, so that it always legitimate to ask about the probability of something. The challenge is to determine the probability, and in particular whether it is just a number. In some usages, as in Kolmogorov, the term probability is reserved for those cases where certain axioms hold. In such cases the answer to a request for a probability might be to say that there isn’t one. This seems safe even if it conflicts with the questioner’s presuppositions about the universality of probabilities. In the instrumentalist view of Dawid, however, suggests that probabilistic methods are tools that can always be used. Thus the probability may exist even if it does not have the significance that one might think and, in particular, it is not appropriate to use it for ‘rational decision making’.

I have often come across seemingly sensible people who use ‘sophisticated mathematics’ in strange ways. I think perhaps they take an instrumentalist view of mathematics as a whole, and not just probability theory. This instrumentalist mathematics reminds me of Keynes’ ‘pseudo-mathematics’. But the key difference is that mathematicians, such as Dawid, know that the usage is only instrumentalist and that there are other questions to be asked. The problem is not the instrumentalist view as such, but the dogma (of at last some) that it is heretical to question widely used instruments.

The financial crises of 2007/8 were partly attributed by Lord Turner to the use of ‘sophisticated mathematics’. From Keynes’ perspective it was the use of pseudo-mathematics. My view is that if it is all you have then even pseudo-mathematics can be quite informative, and hence worthwhile. One just has to remember that it is not ‘proper’ mathematics. In Dawid’s terminology  the problem seems to be that the instrumental use of mathematics without any obvious concern for its empirical validity. Indeed, since his notion of validity concerns limiting frequencies, one might say that the problem was the use of an instrument that was stunningly inappropriate to the question at issue.

It has long seemed  to me that a similar issue arises with many miscarriages of justice, intelligence blunders and significant policy mis-steps. In Keynes’ terms people are relying on a theory that simply does not apply. In Dawid’s terms one can put it blunter: Decision-takers were relying on the fact that something had a very high probability when they ought to have been paying more attention to the evidence in the actual situation, which showed that the probability was – in Dawid’s terms – empirically invalid. It could even be that the thing with a high instrumental probability was very unlikely, all things considered.

Artificial Intelligence?

The subject of ‘Artificial Intelligence’ (AI) has long provided ample scope for long and inconclusive debates. Wikipedia seems to have settled on a view, that we may take as straw-man:

Every aspect of learning or any other feature of intelligence can be so precisely described that a machine can be made to simulate it. [Dartmouth Conference, 1956] The appropriately programmed computer with the right inputs and outputs would thereby have a mind in exactly the same sense human beings have minds. [John Searle’s straw-man hypothesis]

Readers of my blog will realise that I agree with Searle that his hypothesis is wrong, but for different reasons. It seems to me that mainstream AI (mAI) is about being able to take instruction. This is a part of learning, but by no means all. Thus – I claim – mAI is about a sub-set of intelligence. In many organisational settings it may be that sub-set which the organisation values. It may even be that an AI that ‘thought for itself’ would be a danger. For example, in old discussions about whether or not some type of AI could ever act as a G.P. (General Practitioner – first line doctor) the underlying issue has been whether G.P.s ‘should’ think for themselves, or just apply their trained responses. My own experience is that sometimes G.P.s doubt the applicability of what they have been taught, and that sometimes this is ‘a good thing’. In effect, we sometimes want to train people, or otherwise arrange for them to react in predictable ways, as if they were machines. mAI can create better machines, and thus has many key roles to play. But between mAI and ‘superhuman intelligence’  there seems to be an important gap: the kind of intelligence that makes us human. Can machines display such intelligence? (Can people, in organisations that treat them like machines?)

One successful mainstream approach to AI is to work with probabilities, such a P(A|B) (‘the probability of A given B’), making extensive use of Bayes’ rule, and such an approach is sometimes thought to be ‘logical’, ‘mathematical, ‘statistical’ and ‘scientific’. But, mathematically, we can generalise the approach by taking account of some context, C, using Jack Good’s notation P(A|B:C) (‘the probability of A given B, in the context C’). AI that is explicitly or implicitly statistical is more successful when it operates within a definite fixed context, C, for which the appropriate probabilities are (at least approximately) well-defined and stable. For example, training within an organisation will typically seek to enable staff (or machines) to characterise their job sufficiently well for it to become routine. In practice ‘AI’-based machines often show a little intelligence beyond that described above: they will monitor the situation and ‘raise an exception’ when the situation is too far outside what it ‘expects’. But this just points to the need for a superior intelligence to resolve the situation. Here I present some thoughts.

When we state ‘P(A|B)=p’ we are often not just asserting the probability relationship: it is usually implicit that ‘B’ is the appropriate condition to consider if we are interested in ‘A’. Contemporary mAI usually takes the conditions a given, and computes ‘target’ probabilities from given probabilities. Whilst this requires a kind of intelligence, it seems to me that humans will sometimes also revise the conditions being considered, and this requires a different type of intelligence (not just the ability to apply Bayes’ rule). For example, astronomers who refine the value of relevant parameters are displaying some intelligence and are ‘doing science’, but those first in the field, who determined which parameters are relevant employed a different kind of intelligence and were doing a different kind of science. What we need, at least, is an appropriate way of interpreting and computing ‘probability’ to support this enhanced intelligence.

The notions of Whitehead, Keynes, Russell, Turing and Good seem to me a good start, albeit they need explaining better – hence this blog. Maybe an example is economics. The notion of probability routinely used would be appropriate if we were certain about some fundamental assumptions. But are we? At least we should realise that it is not logical to attempt to justify those assumptions by reasoning using concepts that implicitly rely on them.

Dave Marsay

The limits of (atomistic) mathematics

Lars Syll draws attention to a recent seminar on ‘Confronting economics’ by Tony Lawson, as part of the Bloomsbury Confrontations at UCLU.

If you replace his every use of the term ‘mathematics’ by something like ‘atomistic mathematics’ then I would regard this talk as not only very important, but true. Tony approving quotes Whitehead on challenging implicit assumptions. Is his implicit assumption that mathematics is ‘atomistic’? What about Whitehead’s own mathematics, or that of Russell, Keynes and Turing? He (Tony) seems to suppose that mathematics can’t deal with emergent properities. So What is Whitehead’s work on Process, Keynes’ work on uncertainty, Russell’s work on knowledge or Turing’s work on morphogenesis all about?

Dave Marsay

 

Evolution of Pragmatism?

A common ‘pragmatic’ approach is to keep doing what you normally do until you hit a snag, and (only) then to reconsider. Whereas Lamarckian evolution would lead to the ‘survival of the fittest’, with everyone adapting to the current niche, tending to yield a homogenous population, Darwinian evolution has survival of the maximal variety of all those who can survive, with characteristics only dying out when they are not viable. This evolution of diversity makes for greater resilience, which is maybe why ‘pragmatic’ Darwinian evolution has evolved.

The products of evolution are generally also pragmatic, in that they have virtually pre-programmed behaviours which ‘unfold’ in the environment. Plants grow and procreate, while animals have a richer variety of behaviours, but still tend just to do what they do. But humans can ‘think for themselves’ and be ‘creative’, and so have the possibility of not being just pragmatic.

I was at a (very good) lecture by Alice Roberts last night on the evolution of technology. She noted that many creatures use tools, but humans seem to be unique in that at some critical population mass the manufacture and use of tools becomes sustained through teaching, copying and co-operation. It occurred to me that much of this could be pragmatic. After all, until recently development has been very slow, and so may well have been driven by specific practical problems rather than continual searching for improvements. Also, the more recent upswing of innovation seems to have been associated with an increased mixing of cultures and decreased intolerance for people who think for themselves.

In biological evolution mutations can lead to innovation, so evolution is not entirely pragmatic, but their impact is normally limited by the need to fit the current niche, so evolution typically appears to be pragmatic. The role of mutations is more to increase the diversity of behaviours within the niche, rather than innovation as such.

In social evolution there will probably always have been mavericks and misfits, but the social pressure has been towards conformity. I conjecture that such an environment has favoured a habit of pragmatism. These days, it seems to me, a better approach would be more open-minded, inclusive and exploratory, but possibly we do have a biologically-conditioned tendency to be overly pragmatic: to confuse conventions for facts and  heuristics for laws of nature, and not to challenge widely-held beliefs.

The financial crash of 2008 was blamed by some on mathematics. This seems ridiculous. But the post Cold War world was largely one of growth with the threat of nuclear devastation much diminished, so it might be expected that pragmatism would be favoured. Thus powerful tools (mathematical or otherwise) could be taken up and exploited pragmatically, without enough consideration of the potential dangers. It seems to me that this problem is much broader than economics, but I wonder what the cure is, apart from better education and more enlightened public debate?

Dave Marsay

 

 

Traffic bunching

In heavy traffic, such as on motorways in rush-hour, there is often oscillation in speed and there can even be mysterious ’emergent’ halts. The use of variable speed limits can result in everyone getting along a given stretch of road quicker.

Soros (worth reading) has written an article that suggests that this is all to do with the humanity and ‘thinking’ of the drivers, and that something similar is the case for economic and financial booms and busts. This might seem to indicate that ‘mathematical models’ were a part of our problems, not solutions. So I suggest the following thought experiment:

Suppose a huge number of  identical driverless cars with deterministic control functions all try to go along the same road, seeking to optimise performance in terms of ‘progress’ and fuel economy. Will they necessarily succeed, or might there be some ‘tragedy of the commons’ that can only be resolved by some overall regulation? What are the critical factors? Is the nature of the ‘brains’ one of them?

Are these problems the preserve of psychologists, or does mathematics have anything useful to say?

Dave Marsay