Why do people hate maths?

New Scientist 3141 ( 2 Sept 2017) has the cover splash ‘Your mathematical mind: Why do our brains speak the language of reality?’. The article (p 31) is titled ‘The origin of mathematics’.

I have made pedantic comments on previous articles on similar topics, to be told that the author’s intentions have been slightly skewed in the editing process. Maybe it has again. But some interesting (to me) points still arise.

Firstly, we are told that brain scans showthat:

a network of brain regions involved in mathematical thought that was activated when mathematicians reflected on problems in algebra, geometry and topology, but not when they were thinking about non-mathsy things. No such distinction was visible in other academics. Crucially, this “maths network” does not overlap with brain regions involved in language.

It seems reasonable to suppose that many people do not develop such a maths capability from experience in ordinary life or non-mathsy subjects, and perhaps don’t really appreciate its significance. Such people would certainly find maths stressful, which may explain their ‘hate’. At least we can say – contradicting the cover splash – that most people lack a mathematical mind, which may explain the difficulties mathematicians have in communicating.

In addition, I have come across a few seemingly sensible people who may seem to hate maths, although I would rather say that they hate ‘pseudo-maths’. For example, it may be true that we have a better grasp on reality if we can think mathematically – as scientists and technologists routinely do – but it seems a huge jump – and misleading – to claim that mathematics is ‘the language of reality’ in any more objective sense. By pseudo-maths I mean something that appears to be maths (at least to the non-mathematician) but which uses ordinary reasoning to make bold claims (such as ‘is the language of reality’).

But there is a more fundamental problem. The article cites Ashby to the effect that ‘effective control’ relies on adequate models. Such models are of course computational and as such we rely on mathematics to reason about them. Thus we might say that mathematics is the language of effective control. If – as some seem to – we make a dichotomy between controllable and not controllable systems then mathematics is the pragmatic language of reality. Here we enter murky waters. For example, if reality is socially constructed then presumably pragmatic social sciences (such as economics) are necessarily concerned with control, as in their models. But one point of my blog is that the kind of maths that applies to control is only a small portion. There is at least the possibility that almost all things of interest to us as humans are better considered using different maths. In this sense it seems to me that some people justifiably hate control and hence related pseudo-maths. It would be interesting to give them a brain scan to see if  their thinking appeared mathematical, or if they had some other characteristic networks of brain regions. Either way, I suspect that many problems would benefit from collaborations between mathematicians and those who hate pseudo-mathematic without necessarily being professional mathematicians. This seems to match my own experience.

Dave Marsay

Advertisements

Mathematical Modelling

Mathematics and modelling in particular is very powerful, and hence can be very risky if you get it wrong, as in mainstream economics. But is modelling inappropriate – as has been claimed – or is it just that it has not been done well enough?

As a mathematician who has dabbled in modelling and economics I thought I’d try my hand at modelling economies. What harm could there be?

My first notion is that actors activity is habitual.

My second is that habits persist until there is a ‘bad’ experience, in which case they are revised. What is taken account of, what counts as ‘bad’ and how habits are replaced or revised are all subject to meta-habits (habits about habits).

In particular, mainstream economists suppose that actors seek to maximise their utilities, and they never revise this approach. But this may be too restrictive.

Myself, I would add that most actors mostly seek to copy others and also tend to discount experiences and lessons identified by previous generations.

With some such ‘axioms’ (suitably formalised) such as those above, one can predict booms and busts leading to new ‘epochs’ characterised by dominant theories and habits. For example, suppose that some actors habitually borrow as much as they can to invest in an asset (such as a house for rent) and the asset class performs well. Then they will continue in their habit, and others who have done less well will increasingly copy them, fuelling an asset price boom. But no asset class is worth an infinite amount, so the boom must end, resulting in disappointment and changes in habit, which may again be copied by those who are losing out on the asset class., giving a bust.  Thus one has an ’emergent behaviour’ that contradicts some of the implicit mainstream assumptions about rationality  (such as ‘ergodicity’), and hence the possibility of meaningful ‘expectations’ and utility functions to be maximized. This is not to say that such things cannot exist, only that if they do exist it must be due to some economic law as yet unidentified, and we need an alternative explanation for booms and busts.

What I take from this is that mathematical models seem possible and may even provide insights.I do not assume that a model that is adequate in the short-run will necessarily continue to be adequate, and my model shows how economic epochs can be self-destructing. To me, the problem in economics is not so much that it uses mathematics and in particular mathematical modelling but that it does so badly. My ‘axioms’ mimic the approach that Einstein took to physics: it replaces an absolutist model by a relativistic one, and shows that it makes a difference. In my model there are no magical ‘expectations’, rather actors may have realistic habits and expectations, based on their experience and interpretation of the media and other sources, which may be ‘correct’ (or at least not falsified) in the short-run, but which cannot provide adequate predictions for the longer run. To survive a change of epochs our actors would need to be at least following some actors who were monitoring and thinking about the overall situation more broadly and deeply than those who focus on short run utility. (Something that currently seems lacking.)

David Marsay

Can polls be reliable?

Election polls in many countries have seemed unusually unreliable recently. Why? And can they be fixed?

The most basic observation is that if one has a random sample of a population in which x% has some attribute then it is reasonable to estimate that x% of the whole population has that attribute, and that this estimate will tend to be more accurate the larger the sample is. In some polls sample size can be an issue, but not in the main political polls.

A fundamental problem with most polls is that the ‘random’ sample may not be uniformly distributed, with some sub-groups over or under represented. Political polls have some additional issues, that are sometimes blamed:

  • People with certain opinions may be reluctant to express them, or may even mislead.
  • There may be a shift in opinions with time, due to campaigns or events.
  • Different groups may differ in whether they actually vote, for example depending on the weather.

I also think that in the UK the trend to postal voting may have confused things, as postal voters will have missed out on the later stages of campaigns, and on later events. (Which were significant in the UK 2017 general election.)

Pollsters have a lot of experience at compensating for these distortions, and are increasingly using ‘sophisticated mathematical tools’. How is this possible, and is there any residual uncertainty?

Back to mathematics, suppose that we have a science-like situation in which we know which factors (e.g. gender, age, social class ..) are relevant. With a large enough sample we can partition the results by combination of factors, measure the proportions for each combination, and then combine these proportions, weighting by the prevalence of the combinations in the whole population. (More sophisticated approaches are used for smaller samples, but they only reduce the statistical reliability.)

Systematic errors can creep in in two ways:

  1. Instead of using just the poll data, some ‘laws of politics’ (such as the effect of rain) or other heuristics (such as that the swing among postal votes will be similar to that for votes in person) may be wrong.
  2. An important factor is missed. (For example, people with teenage children or grandchildren may vote differently from their peers when student fees are an issue.)

These issues have analogues in the science lab. In the first place one is using the wrong theory to interpret the data, and so the results are corrupted. In the second case one has some unnoticed ‘uncontrolled variable’ that can really confuse things.

A polling method using fixed factors and laws will only be reliable when they reasonably accurately the attributes of interest, and not when ‘the nature of politics’ is changing, as it often does and as it seems to be right now in North America and Europe. (According to game theory one should expect such changes when coalitions change or are under threat, as they are.) To do better, the polling organisation would need to understand the factors that the parties were bringing into play at least as well as the parties themselves, and possibly better. This seems unlikely, at least in the UK.

What can be done?

It seems to me that polls used to be relatively easy to interpret, possibly because they were simpler. Our more sophisticated contemporary methods make more detailed assumptions. To interpret them we would need to know what these assumptions were. We could then ‘aim off’, based on our own judgment. But this would involve pollsters in publishing some details of their methods, which they are naturally loth to do. So what could be done? Maybe we could have some agreed simple methods and publish findings as ‘extrapolations’ to inform debate, rather than predictions. We could then factor in our own assumptions. (For example, our assumptions about students turnout.)

So, I don’t think that we can expect reliable poll findings that are predictions, but possibly we could have useful poll findings that would inform debate and allow us to take our own views. (A bit like any ‘big data’.)

Dave Marsay

 

Mathematical modelling

I had the good fortune to attend a public talk on mathematical modelling, organised by the University of Birmingham (UK). The speaker, Dr Nira Chamberlain CMath FIMA CSci, is a council member of the appropriate institution, and so may reasonably be thought to be speaking for mathematicians generally.

He observed that there were many professional areas that used mathematics as a tool, and that they generally failed to see the need for professional mathematicians as such. He thought that mathematical modelling was one area where – at least for the more important problems – mathematicians ought to be involved. He gave examples of modelling, including one of the financial crisis.

The main conclusion seemed very reasonable, and in line with the beliefs of most ‘right thinking’ mathematicians. But on reflection, I wonder if my non-mathematician professional colleagues would accept it. In 19th century professional mathematicians were proclaiming it a mathematical fact that the physical world conformed to classical geometry. On this basis, mathematicians do not seem to have any special ability to produce valid models. Indeed, in the run up to the financial crash there were too many professional mathematicians who were advocating some mainstream mathematical models of finance and economies in which the crash was impossible.

In Dr Chamberlain’s own model of the crash, it seems that deregulation and competition led to excessive risk taking, which risks eventually materialised. A colleague who is a professional scientist but not a professional mathematician has advised me that this general model was recognised by the UK at the time of our deregulation, but that it was assumed (as Greenspan did) that somehow some institution would step in to foreclose this excessive risk taking. To me, the key thing to note is that the risks being taken were systemic and not necessarily recognised by those taking them. To me, the virtue of a model does not just depend on it being correct in some abstract sense, but also that ‘has traction’ with relevant policy and decision makers and takers. Thus, reflecting on the talk, I am left accepting the view of many of my colleagues that some mathematical models are too important to be left to mathematicians.

If we have a thesis and antithesis, then the synthesis that I and my colleagues have long come to is that important mathematical model needs to be a collaborative endeavour, including mathematicians as having a special role in challenging, interpret and (potentially) developing the model, including developing (as Dr C said) new mathematics where necessary. A modelling team will often need mathematicians ‘on tap’ to apply various methods and theories, and this is common. But what is also needed is a mathematical insight into the appropriateness of these tools and the meaning of the results. This requires people who are more concerned with their mathematical integrity than in satisfying their non-mathematical pay-masters. It seems to me that these are a sub-set of those that are generally regarded as ‘professional’. How do we identify such people?

Dave Marsay 

 

Uncertainty is not just probability

I have just had published my paper, based on the discussion paper referred to in a previous post. In Facebook it is described as:

An understanding of Keynesian uncertainties can be relevant to many contemporary challenges. Keynes was arguably the first person to put probability theory on a sound mathematical footing. …

So it is not just for economists. I could be tempted to discuss the wider implications.

Comments are welcome here, at the publisher’s web site or on Facebook. I’m told that it is also discussed on Google+, Twitter and LinkedIn, but I couldn’t find it – maybe I’ll try again later.

Dave Marsay

Instrumental Probabilities

Reflecting on my recent contribution to the economics ejournal special issue on uncertainty (comments invited), I realised that from a purely mathematical point of view, the current mainstream mathematical view, as expressed by Dawid, could be seen as a very much more accessible version of Keynes’. But there is a difference in expression that can be crucial.

In Keynes’ view ‘probability’ is a very general term, so that it always legitimate to ask about the probability of something. The challenge is to determine the probability, and in particular whether it is just a number. In some usages, as in Kolmogorov, the term probability is reserved for those cases where certain axioms hold. In such cases the answer to a request for a probability might be to say that there isn’t one. This seems safe even if it conflicts with the questioner’s presuppositions about the universality of probabilities. In the instrumentalist view of Dawid, however, suggests that probabilistic methods are tools that can always be used. Thus the probability may exist even if it does not have the significance that one might think and, in particular, it is not appropriate to use it for ‘rational decision making’.

I have often come across seemingly sensible people who use ‘sophisticated mathematics’ in strange ways. I think perhaps they take an instrumentalist view of mathematics as a whole, and not just probability theory. This instrumentalist mathematics reminds me of Keynes’ ‘pseudo-mathematics’. But the key difference is that mathematicians, such as Dawid, know that the usage is only instrumentalist and that there are other questions to be asked. The problem is not the instrumentalist view as such, but the dogma (of at last some) that it is heretical to question widely used instruments.

The financial crises of 2007/8 were partly attributed by Lord Turner to the use of ‘sophisticated mathematics’. From Keynes’ perspective it was the use of pseudo-mathematics. My view is that if it is all you have then even pseudo-mathematics can be quite informative, and hence worthwhile. One just has to remember that it is not ‘proper’ mathematics. In Dawid’s terminology  the problem seems to be that the instrumental use of mathematics without any obvious concern for its empirical validity. Indeed, since his notion of validity concerns limiting frequencies, one might say that the problem was the use of an instrument that was stunningly inappropriate to the question at issue.

It has long seemed  to me that a similar issue arises with many miscarriages of justice, intelligence blunders and significant policy mis-steps. In Keynes’ terms people are relying on a theory that simply does not apply. In Dawid’s terms one can put it blunter: Decision-takers were relying on the fact that something had a very high probability when they ought to have been paying more attention to the evidence in the actual situation, which showed that the probability was – in Dawid’s terms – empirically invalid. It could even be that the thing with a high instrumental probability was very unlikely, all things considered.

Artificial Intelligence?

The subject of ‘Artificial Intelligence’ (AI) has long provided ample scope for long and inconclusive debates. Wikipedia seems to have settled on a view, that we may take as straw-man:

Every aspect of learning or any other feature of intelligence can be so precisely described that a machine can be made to simulate it. [Dartmouth Conference, 1956] The appropriately programmed computer with the right inputs and outputs would thereby have a mind in exactly the same sense human beings have minds. [John Searle’s straw-man hypothesis]

Readers of my blog will realise that I agree with Searle that his hypothesis is wrong, but for different reasons. It seems to me that mainstream AI (mAI) is about being able to take instruction. This is a part of learning, but by no means all. Thus – I claim – mAI is about a sub-set of intelligence. In many organisational settings it may be that sub-set which the organisation values. It may even be that an AI that ‘thought for itself’ would be a danger. For example, in old discussions about whether or not some type of AI could ever act as a G.P. (General Practitioner – first line doctor) the underlying issue has been whether G.P.s ‘should’ think for themselves, or just apply their trained responses. My own experience is that sometimes G.P.s doubt the applicability of what they have been taught, and that sometimes this is ‘a good thing’. In effect, we sometimes want to train people, or otherwise arrange for them to react in predictable ways, as if they were machines. mAI can create better machines, and thus has many key roles to play. But between mAI and ‘superhuman intelligence’  there seems to be an important gap: the kind of intelligence that makes us human. Can machines display such intelligence? (Can people, in organisations that treat them like machines?)

One successful mainstream approach to AI is to work with probabilities, such a P(A|B) (‘the probability of A given B’), making extensive use of Bayes’ rule, and such an approach is sometimes thought to be ‘logical’, ‘mathematical, ‘statistical’ and ‘scientific’. But, mathematically, we can generalise the approach by taking account of some context, C, using Jack Good’s notation P(A|B:C) (‘the probability of A given B, in the context C’). AI that is explicitly or implicitly statistical is more successful when it operates within a definite fixed context, C, for which the appropriate probabilities are (at least approximately) well-defined and stable. For example, training within an organisation will typically seek to enable staff (or machines) to characterise their job sufficiently well for it to become routine. In practice ‘AI’-based machines often show a little intelligence beyond that described above: they will monitor the situation and ‘raise an exception’ when the situation is too far outside what it ‘expects’. But this just points to the need for a superior intelligence to resolve the situation. Here I present some thoughts.

When we state ‘P(A|B)=p’ we are often not just asserting the probability relationship: it is usually implicit that ‘B’ is the appropriate condition to consider if we are interested in ‘A’. Contemporary mAI usually takes the conditions a given, and computes ‘target’ probabilities from given probabilities. Whilst this requires a kind of intelligence, it seems to me that humans will sometimes also revise the conditions being considered, and this requires a different type of intelligence (not just the ability to apply Bayes’ rule). For example, astronomers who refine the value of relevant parameters are displaying some intelligence and are ‘doing science’, but those first in the field, who determined which parameters are relevant employed a different kind of intelligence and were doing a different kind of science. What we need, at least, is an appropriate way of interpreting and computing ‘probability’ to support this enhanced intelligence.

The notions of Whitehead, Keynes, Russell, Turing and Good seem to me a good start, albeit they need explaining better – hence this blog. Maybe an example is economics. The notion of probability routinely used would be appropriate if we were certain about some fundamental assumptions. But are we? At least we should realise that it is not logical to attempt to justify those assumptions by reasoning using concepts that implicitly rely on them.

Dave Marsay