Why do people hate maths?

New Scientist 3141 ( 2 Sept 2017) has the cover splash ‘Your mathematical mind: Why do our brains speak the language of reality?’. The article (p 31) is titled ‘The origin of mathematics’.

I have made pedantic comments on previous articles on similar topics, to be told that the author’s intentions have been slightly skewed in the editing process. Maybe it has again. But some interesting (to me) points still arise.

Firstly, we are told that brain scans showthat:

a network of brain regions involved in mathematical thought that was activated when mathematicians reflected on problems in algebra, geometry and topology, but not when they were thinking about non-mathsy things. No such distinction was visible in other academics. Crucially, this “maths network” does not overlap with brain regions involved in language.

It seems reasonable to suppose that many people do not develop such a maths capability from experience in ordinary life or non-mathsy subjects, and perhaps don’t really appreciate its significance. Such people would certainly find maths stressful, which may explain their ‘hate’. At least we can say – contradicting the cover splash – that most people lack a mathematical mind, which may explain the difficulties mathematicians have in communicating.

In addition, I have come across a few seemingly sensible people who may seem to hate maths, although I would rather say that they hate ‘pseudo-maths’. For example, it may be true that we have a better grasp on reality if we can think mathematically – as scientists and technologists routinely do – but it seems a huge jump – and misleading – to claim that mathematics is ‘the language of reality’ in any more objective sense. By pseudo-maths I mean something that appears to be maths (at least to the non-mathematician) but which uses ordinary reasoning to make bold claims (such as ‘is the language of reality’).

But there is a more fundamental problem. The article cites Ashby to the effect that ‘effective control’ relies on adequate models. Such models are of course computational and as such we rely on mathematics to reason about them. Thus we might say that mathematics is the language of effective control. If – as some seem to – we make a dichotomy between controllable and not controllable systems then mathematics is the pragmatic language of reality. Here we enter murky waters. For example, if reality is socially constructed then presumably pragmatic social sciences (such as economics) are necessarily concerned with control, as in their models. But one point of my blog is that the kind of maths that applies to control is only a small portion. There is at least the possibility that almost all things of interest to us as humans are better considered using different maths. In this sense it seems to me that some people justifiably hate control and hence related pseudo-maths. It would be interesting to give them a brain scan to see if  their thinking appeared mathematical, or if they had some other characteristic networks of brain regions. Either way, I suspect that many problems would benefit from collaborations between mathematicians and those who hate pseudo-mathematic without necessarily being professional mathematicians. This seems to match my own experience.

Dave Marsay

Advertisements

Mathematical modelling

I had the good fortune to attend a public talk on mathematical modelling, organised by the University of Birmingham (UK). The speaker, Dr Nira Chamberlain CMath FIMA CSci, is a council member of the appropriate institution, and so may reasonably be thought to be speaking for mathematicians generally.

He observed that there were many professional areas that used mathematics as a tool, and that they generally failed to see the need for professional mathematicians as such. He thought that mathematical modelling was one area where – at least for the more important problems – mathematicians ought to be involved. He gave examples of modelling, including one of the financial crisis.

The main conclusion seemed very reasonable, and in line with the beliefs of most ‘right thinking’ mathematicians. But on reflection, I wonder if my non-mathematician professional colleagues would accept it. In 19th century professional mathematicians were proclaiming it a mathematical fact that the physical world conformed to classical geometry. On this basis, mathematicians do not seem to have any special ability to produce valid models. Indeed, in the run up to the financial crash there were too many professional mathematicians who were advocating some mainstream mathematical models of finance and economies in which the crash was impossible.

In Dr Chamberlain’s own model of the crash, it seems that deregulation and competition led to excessive risk taking, which risks eventually materialised. A colleague who is a professional scientist but not a professional mathematician has advised me that this general model was recognised by the UK at the time of our deregulation, but that it was assumed (as Greenspan did) that somehow some institution would step in to foreclose this excessive risk taking. To me, the key thing to note is that the risks being taken were systemic and not necessarily recognised by those taking them. To me, the virtue of a model does not just depend on it being correct in some abstract sense, but also that ‘has traction’ with relevant policy and decision makers and takers. Thus, reflecting on the talk, I am left accepting the view of many of my colleagues that some mathematical models are too important to be left to mathematicians.

If we have a thesis and antithesis, then the synthesis that I and my colleagues have long come to is that important mathematical model needs to be a collaborative endeavour, including mathematicians as having a special role in challenging, interpret and (potentially) developing the model, including developing (as Dr C said) new mathematics where necessary. A modelling team will often need mathematicians ‘on tap’ to apply various methods and theories, and this is common. But what is also needed is a mathematical insight into the appropriateness of these tools and the meaning of the results. This requires people who are more concerned with their mathematical integrity than in satisfying their non-mathematical pay-masters. It seems to me that these are a sub-set of those that are generally regarded as ‘professional’. How do we identify such people?

Dave Marsay 

 

Uncertainty is not just probability

I have just had published my paper, based on the discussion paper referred to in a previous post. In Facebook it is described as:

An understanding of Keynesian uncertainties can be relevant to many contemporary challenges. Keynes was arguably the first person to put probability theory on a sound mathematical footing. …

So it is not just for economists. I could be tempted to discuss the wider implications.

Comments are welcome here, at the publisher’s web site or on Facebook. I’m told that it is also discussed on Google+, Twitter and LinkedIn, but I couldn’t find it – maybe I’ll try again later.

Dave Marsay

Instrumental Probabilities

Reflecting on my recent contribution to the economics ejournal special issue on uncertainty (comments invited), I realised that from a purely mathematical point of view, the current mainstream mathematical view, as expressed by Dawid, could be seen as a very much more accessible version of Keynes’. But there is a difference in expression that can be crucial.

In Keynes’ view ‘probability’ is a very general term, so that it always legitimate to ask about the probability of something. The challenge is to determine the probability, and in particular whether it is just a number. In some usages, as in Kolmogorov, the term probability is reserved for those cases where certain axioms hold. In such cases the answer to a request for a probability might be to say that there isn’t one. This seems safe even if it conflicts with the questioner’s presuppositions about the universality of probabilities. In the instrumentalist view of Dawid, however, suggests that probabilistic methods are tools that can always be used. Thus the probability may exist even if it does not have the significance that one might think and, in particular, it is not appropriate to use it for ‘rational decision making’.

I have often come across seemingly sensible people who use ‘sophisticated mathematics’ in strange ways. I think perhaps they take an instrumentalist view of mathematics as a whole, and not just probability theory. This instrumentalist mathematics reminds me of Keynes’ ‘pseudo-mathematics’. But the key difference is that mathematicians, such as Dawid, know that the usage is only instrumentalist and that there are other questions to be asked. The problem is not the instrumentalist view as such, but the dogma (of at last some) that it is heretical to question widely used instruments.

The financial crises of 2007/8 were partly attributed by Lord Turner to the use of ‘sophisticated mathematics’. From Keynes’ perspective it was the use of pseudo-mathematics. My view is that if it is all you have then even pseudo-mathematics can be quite informative, and hence worthwhile. One just has to remember that it is not ‘proper’ mathematics. In Dawid’s terminology  the problem seems to be that the instrumental use of mathematics without any obvious concern for its empirical validity. Indeed, since his notion of validity concerns limiting frequencies, one might say that the problem was the use of an instrument that was stunningly inappropriate to the question at issue.

It has long seemed  to me that a similar issue arises with many miscarriages of justice, intelligence blunders and significant policy mis-steps. In Keynes’ terms people are relying on a theory that simply does not apply. In Dawid’s terms one can put it blunter: Decision-takers were relying on the fact that something had a very high probability when they ought to have been paying more attention to the evidence in the actual situation, which showed that the probability was – in Dawid’s terms – empirically invalid. It could even be that the thing with a high instrumental probability was very unlikely, all things considered.

The limits of (atomistic) mathematics

Lars Syll draws attention to a recent seminar on ‘Confronting economics’ by Tony Lawson, as part of the Bloomsbury Confrontations at UCLU.

If you replace his every use of the term ‘mathematics’ by something like ‘atomistic mathematics’ then I would regard this talk as not only very important, but true. Tony approving quotes Whitehead on challenging implicit assumptions. Is his implicit assumption that mathematics is ‘atomistic’? What about Whitehead’s own mathematics, or that of Russell, Keynes and Turing? He (Tony) seems to suppose that mathematics can’t deal with emergent properities. So What is Whitehead’s work on Process, Keynes’ work on uncertainty, Russell’s work on knowledge or Turing’s work on morphogenesis all about?

Dave Marsay