Eddington’s Physical World

A.S. Eddington The Nature of the Physical World: The Gifford Lectures 1927, Macmillan, 1929

(I intend to develop this, but have distracted by later work:)


… The aim is to make clear the scientific view of the world as it stands at the present day, and, where it is incomplete, to judge the direction in which modern ideas appear to be tending.

… I would like to recall that the idealistic tinge in my conception of the physical world arose out of mathematical researches on the relativity theory. In so far as I had any earlier philosophical views, they were of an entirely different complexion.


I have settled down to the task of writing these lectures and have drawn up my chairs to my two tables. Two tables! Yes; there are duplicates of every object about me — two tables, two chairs, two pens.

One of them has been familiar to me from earliest years. It is a commonplace object of that environment which I call the world. How shall I describe it? It has extension; it is comparatively permanent; it is coloured; above all it is substantial. … I do not think substantiality can be described better than by saying that it is the kind of nature exemplified by an ordinary table. And so we go round in circles.^ After all if you are a plain commonsense man, not too much worried with scientific scruples, you will be confident that you understand the nature of an ordinary table. I have even heard of plain men who had the idea that they could better understand the mystery of their own nature if scientists would discover a way of explaining it in terms of the easily comprehensible nature of a table.

Table No. 2 is my scientific table. It is a more recent acquaintance and I do not feel so familiar with it. It does not belong to the world previously mentioned — that world which spontaneously appears around me when I open my eyes, though how much of it is objective andhow much subjective I do not here consider. It is part of a world which in more devious ways has forced itself on my attention.

… Reviewing their properties one by one, there seems to be nothing to choose between the two tables for ordinary purposes; but when abnormal circumstances befall, then my scientific table shows to advantage. If the house catches fire my scientific table will dissolve quite naturally into scientific smoke, whereas my familiar table undergoes a metamorphosis of its substantial nature which I can only regard as miraculous.

The whole trend of modern scientific views is to break down the separate categories of “things”, “influences”, “forms”, etc., and to substitute a common background of all experience. Whether we are studying a material object, a magnetic field, a geometrical figure, or a duration of time, our scientific information is summed up in measures ; neither the apparatus of measurement nor the mode of using it suggests that there is anything essentially different in these problems. The measures themselves afford no ground for a classification by categories. We feel it necessary to concede some background to the measures — an external world; but the attributes of this world, except in so far as they are reflected in the measures, are outside scientific scrutiny. Science has at last revolted against attaching the exact knowledge contained in these measurements to a traditional picture-gallery of conceptions which convey no authentic information of the background and obtrude irrelevancies into the scheme of knowledge.

… It makes all the difference in the world whether the paper before me is poised as it were on a swarm of flies and sustained in shuttlecock fashion by a series of tiny blows from the swarm underneath, or whether it is supported because there is substance below it, it being the intrinsic nature of substance to occupy space to the exclusion of other substance; all the difference in conception at least, but no difference to my practical task of writing on the paper.

It is true that the whole scientific inquiry starts from the familiar world and in the end it must return to the familiar world; but the part of the journey over which the physicist has charge is in foreign territory.

After the physicist has quite finished his world-building a linkage or identification is allowed; but premature attempts at linkage have been found to be entirely mischievous.

Science aims at constructing a world which shall be symbolic of the world of commonplace experience. It is not at all necessary that every individual symbol that is used should represent something in common experience or even something explicable in terms of common experience. The man in the street is always making this demand for concrete explanation of the things referred to in science; but of necessity he must be disappointed. It is like our experience in learning to read. That which is written in a book is symbolic of a story in real life. The whole intention of the book is that ultimately a reader will identify some symbol, say BREAD, with one of the conceptions of familiar life. But it is mischievous to attempt such identifications prematurely, before the letters are strung into words and the words into sentences.

The frank realisation that physical science is concerned with a world of shadows is one of the most significant of recent advances. I do not mean that physicists are to any extent preoccupied with the philosophical implications of this. From their point of view it is not so much a withdrawal of untenable claims as an assertion of freedom for autonomous development. At the moment I am not insisting on the shadowy and symbolic character of the world of physics because of its bearing on philosophy, but because the aloofness from familiar conceptions will be apparent in the scientific theories I have to describe. If you are not prepared for this aloofness you are likely to be out of sympathy with modern scientific theories, and may even think them ridiculous — as, I daresay, many people do.

It is difficult to school ourselves to treat the physical world as purely symbolic. We are always relapsing and mixing with the symbols incongruous conceptions taken from the world of consciousness. Untaught by long experience we stretch a hand to grasp the shadow, instead of accepting its shadowy nature. Indeed, unless we confine ourselves altogether to mathematical symbolism it is hard to avoid dressing our symbols in deceitful clothing. … I can well understand that the younger minds are finding these pictures too concrete and are striving to construct the world out of Hamiltonian functions and symbols so far removed from human preconception that they do not even obey the laws of orthodox arithmetic. For myself I find some difficulty in rising to that plane of thought; but I am convinced that it has got to come.

In these lectures I propose to discuss some of the results of modern study of the physical world which give most food for philosophic thought. This will include new conceptions in science and also new knowledge. In both respects we are led to think of the material universe in a way very different from that prevailing at the end of the [19th] century. … I am convinced that a just appreciation of the physical world as it is understood today carries with it a feeling of open-mindedness towards a wider significance transcending scientific measurement, which might have seemed illogical a generation ago; and in the later lectures I shall try to focus that feeling and make inexpert efforts to find where it leads. …


Frames of space

An exceptionally modest observer might take some other planet than his own as the standard of rest. Then he would have to correct all his measurements for the FitzGerald contraction due to his own motion with respect to the standard, and the corrected measures would give the space-frame belonging to the standard planet as the original measures gave the space-frame of his own planet. For him the dilemma is even more pressing, for there is nothing to guide him as to the planet to be selected for the standard of rest. Once he gives up the naive assumption that his own frame is the one and only right frame the question arises, Which then of the innumerable other frames is right? There is no answer, and so far as we can see no possibility of  an answer. Meanwhile all his experimental measurements are waiting unreduced, because the corrections to be applied to them depend on the answer. I am afraid our modest observer will get rather left behind by his less humble colleagues.

The trouble that arises is not that we have found anything necessarily wrong with the frame of location that has been employed in our system of physics; it has not led to experimental contradictions. The only thing known to be “wrong” with it is that it is not unique. If we had found that our frame was unsatisfactory and another frame was preferable, that would not have caused a great revolution of thought; but to discover that ours is one of many frames, all of which are equally satisfactory, leads to a change of interpretation of the significance of a frame of location.


few indeed are the experiments contributing to our scientific knowledge which would not be invalidated if our methods of measuring lengths were fundamentally unsound. We now find that there is no guarantee that they are not subject to a systematic kind of error. Worse still we do not know if the error occurs or not, and there is every reason to presume that it is impossible to know.


Einstein’s Principle

The modest observer mentioned in the first chapter was faced with the task of choosing between a number of frames of space with nothing to guide his choice. They are different in the sense that they frame the material objects of the world, including the observer himself, differently; but they are indistinguishable in the sense that the world as framed in one space conducts itself according to precisely the same laws as the world framed in another space. Owing to the accident of having been born on a particular planet our observer has hitherto unthinkingly adopted one of the frames; but he realises that this is no ground for obstinately asserting that it must be the right frame. Which is the right frame?

At this juncture Einstein comes forward with a suggestion —

“You are seeking a frame of space which you call the right frame. In what does its rightness consist?”

You are standing with a label in your hand before a row of packages all precisely similar. You are worried because there is nothing to help you decide which of the packages it should be attached to. Look at the label and see what is written on it. Nothing.

“Right” as applied to frames of space is a blank label. It implies that there is something distinguishing a right frame from a wrong frame; but when we ask what is this distinguishing property, the only answer we receive is “Rightness”, which does not make the meaning clearer or convince us that there is a meaning.

I am prepared to admit that frames of space in spite of their present resemblance may in the future turn out to be not entirely indistinguishable. …

But it does not seem a profitable procedure to make odd noises on the off-chance that posterity will find a significance to attribute to them. To those who now harp on a right frame of space we may reply in the words of Bottom the weaver —

“Who would set his wit to so foolish a bird? Who would give a bird the lie, though he cry ‘cuckoo’ never so?”

The next point to notice is that the other quantities of physics go along with the frame of space, so that they also are relative.

… [But:] It is a common mistake to suppose that Einstein’s theory of relativity asserts that everything is relative. Actually it says, “There are absolute things in the world but you must look deeply for them. The things that first present themselves to your notice are for the most part relative.”

A very homely illustration of a relative quantity is afforded by the pound sterling. Whatever may have been the correct theoretical view, the man in the street until very recently regarded a pound as an absolute amount of wealth. But dire experience has now convinced us all of its relativity. At first we used to cling to the idea that there ought to be an absolute pound and struggle to express the situation in paradoxical statements — the pound had really become seven-and-six-pence. But we have grown accustomed to the situation and continue to reckon wealth in pounds as before, merely recognising that the pound is relative and therefore must not be expected to have those properties that we had attributed to it in the belief that it was absolute.

Nature’s Plan of Structure

… I do not think Nature has been particularly subtle in concealing which frame she prefers. It is just that she is not enthusiastic about frames of space. They are a method of partition which we have found useful for reckoning, but they play no part in the architecture of the universe. Surely it is absurd to suppose that the universe is planned in such a way as to conceal its plan. It is like the schemes of the White Knight —

But I was thinking of a plan
To dye one’s whiskers green,
And always use so large a fan
That they could not be seen.

If this is so we shall have to sweep away the frames of space before we can see Nature’s plan in its real significance. She herself has paid no attention to them, and they can only obscure the simplicity of her scheme. I do not mean to suggest that we should entirely rewrite physics, eliminating all reference to frames of space or any quantities referred to them; science has many tasks to perform, besides that of apprehending the ultimate plan of structure of the world. But if we do wish to have insight on this latter point, then the first step is to make an escape from the irrelevant space-frames.

No aethereal frame has been found. We can only discover motion relative to the material landmarks scattered casually about the world; motion with respect to the universal ocean of aether eludes us. We say, “Let V be the velocity of a body through the aether”, and form the various electromagnetic equations in which V is scattered liberally. Then we insert the observed values, and try to eliminate everything that is unknown except V. The solution goes on famously; but just as we have got rid of the other unknowns, behold! V disappears as well, and we are left with the indisputable
but irritating conclusion —

This is a favourite device that mathematical equations resort to, when we propound stupid questions. If we tried to find the latitude and longitude of a point north-east from the north pole we should probably receive the same mathematical answer. “Velocity through aether” is as meaningless as “north-east from the north pole”.

This does not mean that the aether is abolished. We need an aether. The physical world is not to be analysed into isolated particles of matter or electricity with featureless interspace. We have to attribute as much character to the interspace as to the particles, and in present-day physics quite an army of symbols is required to describe what is going on in the interspace. We postulate aether to bear the characters of the interspace as we postulate matter or electricity to bear the characters of the particles. Perhaps a philosopher might question whether it is not possible to admit the characters alone without picturing anything to support them — thus doing away with aether and matter at one stroke. But that is rather beside the point.

You receive a balance-sheet from a public company and observe that the assets amount to such and such a figure. Is this true? Certainly; it is certified by a chartered accountant. But is it really true? Many questions arise; the real values of items are often very different from those which figure in the balance-sheet. I am not especially referring to fraudulent companies. There is a blessed phrase “hidden reserves”; and generally speaking the more respectable the company the more widely does its balance-sheet deviate from reality. This is called sound finance. But apart from deliberate use of the balance-sheet to conceal the actual situation, it is not well adapted for exhibiting realities, because the main function of a balance-sheet is to balance and everything else has to be subordinated to that end

Perhaps you will think we ought to alter our method of keeping the accounts of space so as to make them directly represent the realities. That would be going to a lot of trouble to provide for what are after all rather rare transactions. But as a matter of fact we have managed to meet your desire. Thanks to Minkowski a way of keeping accounts has been found which exhibits realities (absolute things) and balances. There has been no great rush to adopt it for ordinary purposes because it is a four-dimensional balance-sheet.

We have travelled far from the old standpoint which demanded mechanical models of everything in Nature, seeing that we do not now admit even a definite unique distance between two points. The relativity of the current scheme of physics invites us to search deeper and find the absolute scheme underlying it, so that we may see the world in a truer perspective.

Chapter III TIME

Simultaneity (Now) is seen to be relative. The denial of absolute simultaneity is intimately con- nected with the denial of absolute velocity; knowledge of absolute velocity would enable us to assert that certain events in the past or future occur Here but not Now; knowledge of absolute simultaneity would tell us that certain events occur Now but not Here. Removing these artificial sections, we have had a glimpse of the absolute world-structure with its grain diverging and interlacing after the plan of the hour-glass figures. By reference to this structure we discern an absolute distinction between space-like and time-like separation of events — a distinction which justifies and explains our instinctive feeling that space and time are fundamentally different.



If you take a pack of cards as it comes from the maker and shuffle it for a few minutes, all trace of the original systematic order disappears. The order wiil never come back however long you shuffle. Something has been done which cannot be undone, namely, the introduction of a random element in place of arrangement

We shall put forward the contention that —

Whenever anything happens which cannot be undone, it is always reducible to the introduction of a random element analogous to that introduced by shuffling.

he possibility of the shuffling becoming complete is significant. If after shuffling the pack you tear each card in two, a further shuffling of the half-cards becomes possible. Tear the cards again and again; each time there is further scope for the random element to increase. With infinite divisibility there can be no end to the shuffling. The experimental fact that a definite state of equilibrium is rapidly reached indicates that energy is not infinitely divisible, or at least that it is not infinitely divided in the natural processes of shuffling. Historically this is the result from which the quantum theory first arose. We shall return to it in a later chapter.

Chapter V: “BECOMING”

In sorting out the confused data of our experience it has generally been assumed that the object of the quest is to find out all that really exists. There is another quest not less appropriate to the nature of our experience — to find out all that really becomes.


I cannot but think that Newton himself would rejoice that after 200 years the “ocean of undiscovered truth” has rolled back another stage. I do not think of him as censorious because we will not blindly apply his formula regardless of the knowledge that has since accumulated and in circumstances that he never had the opportunity of considering.


I have too long delayed dealing with the criticism of the pure mathematician who is under the impression that geometry is a subject that belongs entirely to him. Each branch of experimental knowledge tends to have associated with it a specialised body of mathematical investigations. The pure mathematician, at first called in as servant, presently likes to assert himself as master; the connexus of mathematical propositions becomes for him the main subject, and he does not ask permission from Nature when he wishes to vary or generalise the original premises. Thus he can arrive at a geometry unhampered by any restriction from actual space measures; a potential theory unhampered by any question as to how gravitational and electrical potentials really behave; a hydrodynamics of perfect fluids doing things which it would be contrary to the nature of any material fluid to do. But it seems to be only in geometry that he has forgotten that there ever was a physical subject of the same name, and even resents the application of the name to anything but his network of abstract mathematics. I do not think it can be disputed that, both etymologically and traditionally, geometry is the science of measurement of the space around us; and however much the mathematical superstructure may now overweigh the observational basis, it is properly speaking an experimental science. This is fully recognised in the “reformed” teaching of geometry in schools; boys are taught to verify by measurement that certain of the geometrical propositions are true or nearly true. No one questions the advantage of an unfettered development of geometry as a pure mathematical subject; but only in so far as this subject is linked to the quantities arising out of observation and measurement, will it find mention in a discussion of the Nature of the Physical World.


The Origin of the Trouble. Nowadays whenever enthusiasts meet together to discuss theoretical physics the talk sooner or later turns in a certain direction. You leave them conversing on their special problems or the latest discoveries; but return after an hour and it is any odds that they will have reached an all-engrossing topic — the desperate state of their ignorance. This is not a pose. It is not even scientific modesty, because the attitude is often one of naive surprise that Nature should have hidden her fundamental secret successfully from such powerful intellects as ours. It is simply that we have turned a corner in the path of progress and our ignorance stands revealed before us, appalling and insistent. There is something radically wrong with the present fundamental conceptions of physics and we do not see how to set it right.

The cause of all this trouble is a little thing called h which crops up continually in a wide range of experiments. In one sense we know just what h is, because there are a variety of ways of measuring it; h is

.0000000000000000000000000065 5 erg-seconds.

That will (rightly) suggest to you that h is something very small; but the most important information is contained in the concluding phrase erg-seconds. The erg is the unit of energy and the second is the unit of time; so that we learn that h is of the nature of energy multiplied by time.

… Erg-seconds or action belongs to Minkowski’s world which is common to all observers, and so it is absolute. It is one of the very few absolute quantities noticed in pre-relativity physics. Except for action and entropy (which belongs to an entirely different class of physical conceptions) all the quantities prominent in pre-relativity physics refer to the three-dimensional sections which are different for different observers.

… It is remarkable that just as Einstein found ready prepared by the mathematicians the Tensor Calculus which he needed for developing his great theory of gravitation, so the quantum physicists found ready for them an extensive action-theory of dynamics without which they could not have made headway.

… It would seem that the atom carelessly throws overboard a lump of energy which, as it glides into the aether, moulds itself into a quantum of action by taking on the period required to make the product of energy and period equal to h. If this unmechanical process of emission seems contrary to our preconceptions, the exactly converse process of absorption is even more so. Here the atom has to look out for a lump of energy of the exact amount required to raise an electron to the higher orbit. It can only extract such a lump from aetherwaves of particular period — not a period which has resonance with the structure of the atom, but the period which makes the energy into an exact quantum.

We must, of course, look forward to an ultimate reconstruction of our conceptions of the physical world which will embrace both the classical laws and the quantum laws in harmonious association. There are still some who think that the reconciliation will be effected by a development of classical conceptions. But the physicists of what I may call “the Copenhagen school” believe that the reconstruction has to start at the other end, and that in the quantum phenomena we are getting down to a more intimate contact with Nature’s way of working than in the coarse-grained experience which has furnished the classical laws. …

The classical laws are the limit to which the quantum laws tend when states of very high quantum number are concerned.

This is the famous Correspondence Principle enunciated by Bohr.

For an example I will borrow a quantum conception from the next chapter. It may not be destined to survive in the present rapid evolution of ideas, but at any rate it will illustrate my point. In Bohr’s semi-classical model of the hydrogen atom there is an electron describing a circular or elliptic orbit. This is only a model; the real atom contains nothing of the sort. The real atom contains something which it has not entered into the mind of man to conceive, which has, however, been described symbolically by Schrodinger. This “something” is spread about in a manner by no means comparable to an electron describing an orbit. Now excite the atom into successively higher and higher quantum states. In the Bohr model the electron leaps into higher and higher orbits. In the real atom Schrodinger’s “something” begins to draw itself more and more together until it begins sketchily to outline the Bohr orbit and even imitates a condensation running round. Go on to still higher quantum numbers, and Schrodinger’s symbol now represents a compact body moving round in the same orbit and the same period as the electron in Bohr’s model, and moreover radiating according to the classical laws of an electron. And so when the quantum number reaches infinity, and the atom bursts, a genuine classical electron flies out. The electron, as it leaves the atom, crystallises out of Schrodinger’s mist like a genie emerging from his bottle.


[The] theory has already gone through three distinct phases associated with the names of Born and Jordan, Dirac, Schrodinger. … As regards philosophical ideas the three theories are poles apart; as regards mathematical content they are one and the same.

All authorities seem to be agreed that at, or nearly at, the root of everything in the physical world lies the mystic formula

qppq = ih/2π

… The righthand side contains nothing unusual, but the left-hand side baffles imagination. We call q and p co-ordinates and momenta, borrowing our vocabulary from the world of space and time and other coarse-grained experience; but that gives no real light on their nature, nor does it explain why qp is so ill-behaved as to be unequal to pq.

For Dirac p is a symbol without any kind of numerical interpretation; he calls it a ^-number, which is a way of saying that it is not a number at all.

I venture to think that there is an idea implied in Dirac’s treatment which may have great philosophical significance, independently of any question of success in this particular application. The idea is that in digging deeper and deeper into that which lies at the base of physical phenomena we must be prepared to come to entities which, like many things in our conscious experience, are not measurable by numbers in any way; and further it suggests how exact science, that is to say the science of phenomena correlated to measure-numbers, can be founded on such a basis.

One of the greatest changes in physics between the nineteenth century and the present day has been the change in our ideal of scientific explanation. It was the boast of the Victorian physicist that he would not claim to understand a thing until he could make a model of it; and by a model he meant something constructed of levers, geared wheels, squirts, or other appliances familiar to an engineer. Nature in building the universe was supposed to be dependent on just the same kind of resources as any human mechanic; and when the physicist sought an explanation of phenomena his ear was straining to catch the hum of machinery. The man who could make gravitation out of cog-wheels would have been a hero in the Victorian age.

Nowadays we do not encourage the engineer to build the world for us out of his material, but we turn to the mathematician to build it out of his material. Doubtless the mathematician is a loftier being than the engineer, but perhaps even he ought not to be entrusted with the Creation unreservedly. We are dealing in physics with a symbolic world, and we can scarcely avoid employing the mathematician who is the professional wielder of symbols; but he must rise to the full opportunities of the responsible task entrusted to him and not indulge too freely his own bias for symbols with an arithmetical interpretation. If we are to discern controlling laws of Nature not dictated by the mind it would seem necessary to escape as far as possible from the cut-and-dried framework into which the mind is so ready to force everything that it experiences.

I think that in principle Dirac’s method asserts this kind of emancipation. He starts with basal entities inexpressible by numbers or number-systems and his basal laws are symbolic expressions unconnected with arithmetical operations. The fascinating point is that as the development proceeds actual numbers are exuded from the symbols. Thus although p and q individually have no arithmetical interpretation, the combination qppq has the arithmetical interpretation expressed by the formula above quoted. By furnishing numbers, though itself non-numerical, such a theory can well be the basis for the measure-numbers studied in exact science. The measure-numbers, which are all that we glean from a physical survey of the world, cannot be the whole world; they may not even be so much of it as to constitute a self-governing unit. This seems the natural interpretation of Dirac’s procedure in seeking the governing laws of exact science in a non-arithmetical calculus

Schrodinger’s theory is now enjoying the full tide of popularity, partly because of intrinsic merit, but also, I suspect, partly because it is the only one of the three that is simple enough to be misunderstood. Rather against my better judgment I will try to give a rough impression of the theory. It would probably be wiser to nail up over the door of the new quantum theory a notice, “Structural alterations in progress — No admittance except on business”, and particularly to warn the doorkeeper to keep out prying philosophers. I will, however, content myself with the protest that, whilst Schrodinger’s theory is guiding us to sound and rapid progress in many of the mathematical problems confronting us and is indispensable in its practical utility, I do not see the least likelihood that his ideas will survive long in their present form.

Principle of Indeterminacy.

My apprehension lest a fourth version of the new quantum theory should appear before the lectures were delivered was not fulfilled; but a few months later the theory definitely entered on a new phase. It was Heisenberg again who set in motion the new development in the summer of 1927, and the consequences were further elucidated by Bohr. The outcome of it is a fundamental general principle which seems to rank in importance with the principle of relativity. I shall here call it the “principle of indeterminacy”.

[We] assert that the description of the position and velocity of an electron beyond a limited number of places of decimals is an attempt to describe something that does not exist; although curiously enough the description of position or of velocity if it had stood alone might have been allowable

Ever since Einstein’s theory showed the importance of securing that the physical quantities which we talk about are actually connected to our experience, we have been on our guard to some extent against meaningless terms.

A general kind of reason for this can be seen without much difficulty. Suppose it is a question of knowing the position and momentum of an electron. So long as the electron is not interacting with the rest of the universe we cannot be aware of it. We must take our chance of obtaining knowledge of it at moments when it is interacting with something and thereby producing effects that can be observed. But in any such interaction a complete quantum is involved; and the passage of this quantum, altering to an important extent the conditions at the moment of our observation, makes the information out of date even as we obtain it.

This is not a casual difficulty; it is a cunningly arranged plot — a plot to prevent you from seeing something that does not exist, viz. the locality of the electron within the atom.

Other examples of the reciprocal uncertainty have been given, and there seems to be no doubt that it is entirely general. The suggestion is that an association of exact position with exact momentum can never be discovered by us because there is no such thing in Nature.

A New Epistemology

The principle of indeterminacy is epistemological. It reminds us once again that the world of physics is a world contemplated from within surveyed by appliances which are part of it and subject to its laws. What the world might be deemed like if probed in some supernatural manner by appliances not furnished by itself we do not profess to know.

There is a doctrine well known to philosophers that the moon ceases to exist when no one is looking at it. I will not discuss the doctrine since I have not the least idea what is the meaning of the word existence when used in this connection. At any rate the science of astronomy has not been based on this spasmodic kind of

What should we regard as a complete description of this scientific world? We must not introduce anything like velocity through aether, which is meaningless since it is not assigned any causal connection with our experience. On the other hand we cannot limit the description to the immediate data of our own spasmodic observations. The description should include nothing that is unobservable but a great deal that is actually unobserved. Virtually we postulate an infinite army of watchers and measurers. From moment to moment they survey everything that can be surveyed and measure everything that can be measured by methods which we ourselves might conceivably employ. Everything they measure goes down as part of the complete description of the scientific world. We can, of course, introduce derivative descriptions, words expressing mathematical combinations of the immediate measures which may give greater point to the description — so that we may not miss seeing the wood for the trees.

This theory of knowledge is primarily intended to apply to our macroscopic or large-scale survey of the physical world, but it has usually been taken for granted that it is equally applicable to a microscopic study. We have at last realised the disconcerting fact that though it applies to the moon it does not apply to the electron.

I expect that at first this will sound to you like a merely dialectical difficulty. But there is much more in it than that. The deliberate frustration of our efforts to bring knowledge of the microscopic world into orderly plan, is a strong hint to alter the plan.

It means that we have been aiming at a false ideal of a complete description of the world. There has not yet been time to make serious search for a new epistemology adapted to these conditions. It has become doubtful whether it will ever be possible to construct a physical world solely out of the knowable — the guiding principle in our macroscopic theories. If it is possible, it involves a great upheaval of the present foundations. It seems more likely that we must be content to admit a mixture of the knowable and unknowable. This means a denial of determinism, because the data required for a prediction of the future will include the unknowable elements of the past. I think it was Heisenberg who said,

The question whether from a complete knowledge of the past we can predict the future, does not arise because a complete knowledge of the past involves a self-contradiction.

It is only through a quantum action that the outside world can interact with ourselves and knowledge of it can reach our minds. A quantum action may be the means of revealing to us some fact about Nature, but simultaneously a fresh unknown is implanted in the womb of Time. An addition to knowledge is won at the expense of an addition to ignorance. It is hard to empty the well of Truth with a leaky bucket.


We have an intricate task before us. We are going to build a World — a physical world which will give a shadow performance of the drama enacted in the world of experience. We are not very expert builders as yet; and you must not expect the performance to go off without a hitch or to have the richness of detail which a critical audience might require. But the method about to be described seems to give the bold outlines; doubtless we have yet to learn other secrets of the craft of world building before we can complete the design.

The first problem is the building material. I remember that as an impecunious schoolboy I used to read attractive articles on how to construct wonderful contrivances out of mere odds and ends. Unfortunately these generally included the works of an old clock, a few superfluous telephones, the quicksilver from a broken barometer, and other oddments which happened not to be forthcoming in my lumber room. I will try not to let you down like that. I cannot make the world out of nothing, but I will demand as little specialised material as possible. Success in the game of World Building consists in the greatness of the contrast between the specialised properties of the completed structure and the unspecialised nature of the basal material.

Relation Structure. We take as building material relations and relata. The relations unite the relata; the relata are the meeting points of the relations. The one is unthinkable apart from the other. I do not think that a more general starting-point of structure could be conceived.

To distinguish the relata from one another we assign to them monomarks. …

The relation between two human individuals in its broadest sense comprises every kind of connection or comparison between them — consanguinity, business transactions, comparative stature, skill at golf — any kind of description in which both are involved. For generality we shall suppose that the relations in our world-material are likewise composite and in no way expressible in numerical measure. Nevertheless there must be some kind of comparability or likeness of relations, as there is in the relations of human individuals; otherwise there would be nothing more to be said about the world than that everything in it was utterly unlike everything else. To put it another way, we must postulate not only relations between the relata but some kind of relation of likeness between some of the relations. The slightest concession in this direction will enable us to link the whole into a structure.

We assume then that, considering a relation between two relata, it will in general be possible to pick out two other relata close at hand which stand to one another in a “like” relation. By “like” I do not mean “like in every respect”, but like in respect to one of the aspects of the composite relation. How is the particular aspect selected? If our relata were human individuals different judgments of likeness would be made by the genealogist, the economist, the psychologist, the sportsman, etc.; and the building of structure would here diverge along a number of different lines. Each could build his own world-structure from the common basal material of humanity. There is no reason to deny that a similar diversity of worlds could be built out of our postulated material. But all except one of these worlds will be stillborn. Our labour will be thrown away unless the world we have built is the one which the mind chooses to vivify into a world of experience. The only definition we can give of the aspect of the relations chosen for the criterion of likeness, is that it is the aspect which will ultimately be concerned in the getting into touch of mind w T ith the physical world. But that is beyond the province of physics.

This one-to-one correspondence of “likeness” is only supposed to be definite in the limit when the relations are very close together in the structure. Thus we avoid any kind of comparison at a distance which is as objectionable as action at a distance. Let me confess at once that I do not know what I mean here by “very close together”. As yet space and time have not been built. Perhaps we might say that only a few of the relata possess relations whose comparability to the first is definite, and take the definiteness of the comparability as the criterion of contiguity. I hardly know. The uilding at this point shows some cracks, but I think it should not be beyond the resources of the mathematical logician to cement them up. We should also arrange at this stage that the monomarks are so assigned as to give an indication of contiguity.

Let us start with a relatum A and a relation AP radiating from it. Now step to a contiguous relatum B and pick out the “like” relation BQ. Go on to another contiguous relatum C and pick out the relation CR which is like BQ. (Note that since C is farther from A than from B } the relation at C which is like AP is not so definite as the relation which is like BQ.) Step by step we may make the comparison round a route AEFA which returns to the starting-point. There is nothing to ensure that the final relation AP’ which has, so to speak, been carried round the circuit will be the relation AP with which we originally started.

We have now two relations AP, AP’ radiating from the first relatum, their difference being connected with a certain circuit in the world AEFA. The loose ends of the relations P and P have their monomarks, and we can take the difference of the monomarks (i.e. the difference of the identification numbers comprised in them) as the code expression for the change introduced by carrying AP round the circuit. As we vary the circuit and the original relation, so the change PP’ varies; and the next step is to find a mathematical formula expressing this dependence. There are virtually four things to connect, the circuit counting double since, for example, a rectangular circuit would be described by specifying two sides. Each of them has to be specified by four identification numbers (either monomarks or derived from monomarks) ; consequently, to allow for all combinations, the required mathematical formula contains 4^4 or 256 numerical coefficients. These coefficients give a numerical measure of the structure surrounding the initial relatum.

The axiom of comparability of contiguous relations only discriminates between like and unlike, and does not initially afford any means of classifying various decrees and kinds of unlikeness; but we have found a means of specifying the kind of unlikeness of AP and AP’ by reference to a circuit which “transforms” one into the other. Thus we have built a quantitative study of diversity on a definition of similarity.

The numerical measures of structure will be dependent on, and vary according to, the arbitrary code of monomarks used for the identification of relata. This, however, renders them especially suitable for building the ordinary quantities of physics. … Physical quantities in general have no absolute value, but values relative to chosen frames of reference or codes of monomarks.

We have now fashioned our bricks from the primitive clay and the next job is to build with them. The 256 measures of structure varying from point to point of the world are somewhat reduced in number when duplicates are omitted; but even so they include a great deal of useless lumber which we do not require for the building. That seems to have worried a number of the most eminent physicists; but I do not quite see why. Ultimately it is the mind that decides what is lumber — which part of our building will shadow the things of common experience, and which has no such counterpart. It is no part of our function as purveyors of building material to anticipate what will be chosen for the palace of the mind. The lumber will now be dropped as irrelevant in the further operations, but I do not agree with those who think it a blemish on the theory that the lumber should ever have appeared in it.

I have said that violation of these laws of conservation is unthinkable. Have we then found physical laws which will endure for all time unshaken by any future revolution? But the proviso must be remembered, “granting that the identification [of their subject matter] is correct”. The law itself will endure as long as two and two make four; but its practical importance depends on our knowing that which obeys it. We think we have this knowledge, but do not claim infallibility in this respect. From a practical point of view the law would be upset, if it turned out that the thing conserved was not that which we are accustomed to measure with the above-mentioned instruments but something slightly different.

Selective Influence of the Mind.

By following this particular plan of building we construct things which satisfy the law of conservation, that is to say things which are permanent. The law of conservation is a truism for the things which satisfy it; but its prominence in the scheme of law of the physical world is due to the mind having demanded permanence. We might have built things which do not satisfy this law. In fact we do build one very important thing “action” which is not permanent; in respect to “action” physics has taken the bit in her teeth, and has insisted on recognising this as the most fundamental thing of all, although the mind has not thought it worthy of a place in the familiar world and has not vivified it by any mental image or conception.

he world which we have built from the relationstructure is no doubt doomed to be pulled about a good deal as our knowledge progresses. The quantum theory shows that some radical change is impending. But I think that our building exercise has at any rate widened our minds to the possibilities and has given us a different orientation towards the idea of physical law. The points which I stress are:

Firstly, a strictly quantitative science can arise from a basis which is purely qualitative. The comparability that has to be assumed axiomatically is a merely qualitative discrimination of likeness and unlikeness.

Secondly, the laws which we have hitherto regarded as the most typical natural laws are of the nature of truisms, and the ultimate controlling laws of the basal structure (if there are any) are likely to be of a different type from any yet conceived.

Thirdly, the mind has by its selective power fitted the processes of Nature into a frame of law of a pattern largely of its own choosing; and in the discovery of this system of law the mind may be regarded as regaining from Nature that which the mind has put into Nature.

Three Types of Law. So far as we are able to judge, the laws of Nature divide themselves into three classes:

(1) identical laws,
(2) statistical laws,
(3) transcendental laws.

We have just been considering the identical laws, i.e. the laws obeyed as mathematical identities in virtue of the way in which the quantities obeying them are built. They cannot be regarded as genuine laws of control of the basal material of the world. Statistical laws relate to the behaviour of crowds, and depend on the fact that although the behaviour of each individual may be extremely uncertain average results can be predicted with confidence. Much of the apparent uniformity of Nature is a uniformity of averages. Our gross senses only take cognisance of the average effect of vast numbers of individual particles and processes; and the regularity of the average might well be compatible with a great degree of lawlessness of the individual. I do not think it is possible to dismiss statistical laws (such as the second law of thermodynamics) as merely mathematical adaptations of the other classes of law to certain practical problems. They involve a peculiar element of their own connected with the notion of a priori probability; but we do not yet seem able to find a place for this in any of the current conceptions of the world substratum.

If there are any genuine laws of control of the physical world they must be sought in the third group — the transcendental laws. The transcendental laws comprise all those which have not become obvious identities implied in the scheme of world-building. … It is a natural suggestion that the greater difficulty in elucidating the transcendental laws is due to the fact that we are no longer engaged in recovering from Nature what we have ourselves put into Nature, but are at last confronted with its own intrinsic system of government. But I scarcely know what to think. We must not assume that the possible developments of the new attitude towards natural law have been exhausted in a few short years. It may be that the laws of atomicity, like the laws of conservation, arise only in the presentation of the world to us and can be recognised as identities by some extension of the argument we have followed. But it is perhaps as likely that after we have cleared away all the superadded laws which arise solely in our mode of apprehension of the world about us, there will be left an external world developing under genuine laws of control.

At present we can notice the contrast that the laws which we now recognise as man-made are characterised by continuity, whereas the laws to which the mind as yet lays no claim are characterised by atomicity. The quantum theory with its avoidance of fractions and insistence on integral units seems foreign to any scheme which we should be likely subconsciously to have imposed as a frame for natural phenomena. Perhaps our final conclusion as to the world of physics will resemble Kronecker’s view of pure mathematics.

“God made the integers, all else is the work of man.”


Familiar Conceptions and Scientific Symbols. We have said in the Introduction that the raw material of the scientific world is not borrowed from the familiar world. It is only recently that the physicist has deliberately cut himself adrift from familiar conceptions. He did not set out to discover a new world but to tinker with the old. Like everyone else he started with the idea that things are more or less what they seem, and that our vivid impression of our environment may be taken as a basis to work from. Gradually it has been found that some of its most obvious features must be rejected. … But this new knowledge can still be grasped by a rearrangement of familiar conceptions. I can picture to myself quite vividly the state of affairs just described; if there is any strain, it is on my credulity, not on my powers of conception. Other advances of knowledge can be accommodated by that very useful aid to comprehension — “like this only more so”. For example, if you think of something like a speck of dust only more so you have the atom as it was conceived up to a fairly recent date.

In addition to the familiar entities the physicist had to reckon with mysterious agencies such as gravitation or electric force; but this did not disturb his general outlook. … It was taken to be one of the main aims of research to discover how to reduce these agencies to something describable in terms of familiar conceptions — in short to “explain” them. …

Then at last it was seen that the linkage to familiar concepts should be through the advanced constructs of physics and not at the beginning of the alphabet. We have suffered, and we still suffer, from expectations that electrons and quanta must be in some fundamental respects like materials or forces familiar in the workshop — that all we have got to do is to imagine the usual kind of thing on an infinitely smaller scale. It must be our aim to avoid such prejudgments, which are surely illogical; and since we must cease to employ familiar concepts, symbols have become the only possible alternative.

Although this book may in most respects seem diametrically opposed to Dr.
Whitehead‘s widely read philosophy of Nature, I think it would be truer to regard him as an ally who from the opposite side of the mountain is tunnelling to meet his less philosophically minded colleagues. The important thing is not to confuse the two entrances.

Nature of Exact Science. One of the characteristics of physics is that it is an exact science, and I have generally identified the domain of physics with the domain of exact science.

… exact science invokes, or has seemed to invoke, a type of law inevitable and soulless against which the human spirit rebels. …

[The] whole subject-matter of exact science consists of pointer readings and similar indications.  … The essential point is that, although we seem to have very definite conceptions of objects in the external world, those conceptions do not enter into exact science and are not in any way confirmed by it. Before exact science can begin to handle the problem they must be replaced by quantities representing the results of physical measurement.

There is always the triple correspondence

(a) a mental image, which is in our minds and not in the external world;
(b) some kind of counterpart in the external world, which is of inscrutable nature;
(c) a set of pointer readings, which exact science can study and connect with other pointer readings.

And so we have our schedule of pointer readings ready to make the descent. And if you still think that this substitution has taken away all reality from the problem, I am not sorry that you should have a foretaste of the difficulty in store for those who hold that exact science is all-sufficient for the description of the universe and that there is nothing in our experience which cannot be brought within its scope.

I should like to make it clear that the limitation of the scope of physics to pointer readings and the like is not a philosophical craze of my own but is essentially the current scientific doctrine. It is the outcome of a tendency discernible far back in the last century but only formulated comprehensively with the advent of the relativity theory. The vocabulary of the physicist comprises a number of words such as length, angle, velocity, force, potential, current, etc., which we call “physical quantities”. It is now recognised as essential that these should be defined according to the way in which we actually recognise them when confronted with them, and not according to the metaphysical significance which we may have anticipated for them.

Limitations of Physical Knowledge. Whenever we state the properties of a body in terms of physical quantities we are imparting knowledge as to the response of various metrical indicators to its presence, and nothing more. After all, knowledge of this kind is fairly comprehensive. A knowledge of the response of all kinds of objects — weighing-machines and other indicators — would determine completely its relation to its environment, leaving only its inner un-get-atable nature undetermined.

Mathematics is the model of exact inference; and in physics we have endeavoured to replace all cruder inference by this rigorous type. Where we cannot complete the mathematical chain we confess that we are wandering in the dark and are unable to assert real knowledge. Small wonder then that physical science should have evolved a conception of the world consisting of entities rigorously bound to one another by mathematical equations forming a deterministic scheme. This knowledge has all been inferred and it was bound therefore to conform to the system of inference that was used. … But making all allowance for future progress in developing the scheme, it seems to be flying in the face of obvious facts to pretend that it is all comprehensive, Mr. X is one of the recalcitrants. When sound-waves impinge on his ear he moves, not in accordance with a mathematical equation involving the physical measure numbers of the waves, but in accordance with the meaning that those sound-waves are used to convey. To know what there is about Mr. X which makes him behave in this strange way, we must look not to a physical system of inference, but to that insight beneath the symbols which in our own minds we possess.



In the scientific world the conception of substance is wholly lacking, and that which most nearly replaces it, viz. electric charge, is not exalted as star-performer above the other entities of physics. For this reason the scientific world often shocks us by its appearance of unreality. It offers nothing to satisfy our demand for the concrete.

… The modern scientific theories have broken away from the common standpoint which identifies the real with the concrete. …

he cleavage between the scientific and the extrascientific domain of experience is, I believe, not a cleavage between the concrete and the transcendental but between the metrical and the non-metrical. I am at one with the materialist in feeling a repugnance towards any kind of pseudo-science of the extrascientific territory. Science is not to be condemned as narrow because it refuses to deal with elements of experience which are unadapted to its own highly organised method ; nor can it be blamed for looking superciliously on the comparative disorganisation of our knowledge and methods of reasoning about the non-metrical part of experience. But I think we have not been guilty of pseudo-science in our attempt to show in the last two chapters how it comes about that within the whole domain of experience a selected portion is capable of that exact metrical representation which is requisite for development by the scientific method.


To put the conclusion crudely — the stuff of the world is mind-stuff. As is often the way with crude statements, I shall have to explain that by “mind” I do not here exactly mean mind and by “stuff” I do not at all mean stuff. Still this is about as near as we can get to the idea in a simple phrase. The mind-stuff of the world is, of course, something more general than our individual conscious minds; but we may think of its nature as not altogether foreign to the feelings in our consciousness. The realistic matter and fields of force of former physical theory are altogether irrelevant — except in so far as the mind-stuff has itself spun these imaginings. The symbolic matter and fields of force of present-day theory are more relevant, but they bear to it the same relation that the bursar’s accounts bear to the activity of the college. Having granted this, the mental activity of the part of the world constituting ourselves occasions no surprise; it is known to us by direct self-knowledge, and we do not explain it away as something other than we know it to be — or, rather, it knows itself to be. It is the physical aspects of the world that we have to explain, presumably by some such method as that set forth in our discussion on world-building. Our bodies are more mysterious than our minds — at least they would be, only that we can set the mystery on one side by the device of the cyclic scheme of physics, which enables us to study their phenomenal behaviour without ever coming to grips with the underlying mystery.

The mind-stuff is not spread in space and time; these are part of the cyclic scheme ultimately derived out of it. But we must presume that in some other way or aspect it can be differentiated into parts. … When messages relating to a table are travelling in the nerves, the nerve-disturbance does not in the least resemble either the external table that originates the mental impression or the conception of the table that arises in consciousness. … We are acquainted with an external world because its fibres run into our consciousness; it is only our own ends of the fibres that we actually know; from those ends we more or less successfully reconstruct the rest, as a palaeontologist reconstructs an extinct monster from its footprint.

Again Bertrand Russell writes —

What the physiologist sees when he examines a brain is in the physiologist, not in the brain he is examining. What is in the brain by the time the physiologist examines it if it is dead, I do not profess to know; but while its owner was alive, part, at least, of the contents of his brain consisted of his percepts, thoughts, and feelings. [Analysis of Matter, p. 320.]

I assume that we have left the illusion of substance so far behind that the word “stuff” will not cause any misapprehension. I certainly do not intend to materialise or substantialise mind. Mind is — but you know what mind is like, so why should I say more about its nature? The word “stuff” has reference to the function it has to perform as a basis of world-building and does not imply any modified view of its nature.

It is true that I have a strong impression of an external world apart from any communication with other conscious beings. But apart from such communication I should have no reason to trust the impression.

This domestic definition of existence for scientific purposes follows the principle now adopted for all other definitions in science, namely, that a thing must be defined according to the way in which it is in practice recognised and not according to some ulterior significance that we imagine it to possess.

No familiar conceptions can be woven round the electron; it belongs to the waiting list. Similarly the description of the processes must be taken with a grain of salt. The tossing up of the electron is a conventional way of depicting a particular change of state of the atom which cannot really be associated with movements in space as macroscopically conceived. Something unknown is doing we don’t know what — that is what our theory amounts to. It does not sound a particularly illuminating theory. I have read something like it elsewhere —

The slithy toves
Did gyre and gimble in the wabe.

There is the same suggestion of activity. There is the same indefiniteness as to the nature of the activity and of what it is that is acting. And yet from so unpromising a beginning we really do get somewhere. We bring into order a host of apparently unrelated phenomena; we make predictions, and our predictions come off. The reason — the sole reason — for this progress is that our description is not limited to unknown agents executing unknown activities, but numbers are scattered freely in the description.

It would not be a bad reminder of the essential unknownness of the fundamental entities of physics to translate it into “Jabberwocky”; provided all numbers — all metrical attributes — are unchanged, it does not suffer in the least. Out of the numbers proceeds that harmony of natural law which it is the aim of science to disclose. We can grasp the tune but not the player. Trinculo might have been referring to modern physics in the words, “This is the tune of our catch, played by the picture of Nobody”.


In the old conflict between freewill and predestination it has seemed hitherto that physics comes down heavily on the side of predestination. Without making extravagant claims for the scope of natural law, its moral sympathy has been with the view that whatever the future may bring forth is already foretold in the configurations of the past … .

… It
seems contrary to our feeling of the dignity of the mind to suppose that it merely registers a dictated sequence of thoughts and emotions; but it seems equally contrary to its dignity to put it at the mercy of impulses with no causal antecedents. I shall not deal with this dilemma. Here I have to set forth the position of physical science on this matter so far as it comes into her territory. …

The foregoing paragraph is from the manuscript of the original lecture delivered in Edinburgh. …

In rewriting this chapter a year later I have had to mingle with this attitude of indifference an attitude more definitely hostile to determinism which has arisen from the acceptance of the Principle of Indeterminacy (p. 220). There has been no time for more than a hurried examination of the far-reaching consequences of this principle; and I should have been reluctant to include “stop-press” ideas were it not that they appear to clinch the conception towards which the earlier developments were leading. The future is a combination of the causal influences of the past together with unpredictable elements — unpredictable not merely because it is impracticable to obtain the data of prediction, but because no data connected causally with our experience exist. It will be necessary to defend so remarkable a change of opinion at some length. Meanwhile we may note that science thereby withdraws its moral opposition to free-will. Those who maintain a deterministic theory of mental activity must do so as the outcome of their study of the mind itself and not with the idea that they are thereby making it more conformable with our experimental knowledge of the laws of inorganic nature.

[It] is a healthy attitude to assume that nothing is beyond the scope of scientific prediction until the limits of prediction actually declare themselves. (sic) …

[ We] must recall that knowledge of the physical world has to be inferred from the nerve-messages which reach our brains, and the current epistemology assumes that there exists a determinate scheme of inference (lying before us as an ideal and gradually being unravelled). But, as has already been pointed out, the chains of inference are simply the converse of the chains of physical causality by which distant events are connected to the nerve-messages. If the scheme of transmission of these messages through the external world is not deterministic then the scheme of inference as to their source cannot be deterministic, and our epistemology has been based on an impossible ideal. In that case our attitude to the whole scheme of natural knowledge must be profoundly modified.

Whether or not there is a causal scheme at the base of atomic phenomena, modern atomic theory is not now attempting to find it; and it is making rapid progress because it no longer sets this up as a practical aim.

[When] we ask what is the characteristic of the phenomena that have been successfully predicted, the answer is that they are effects depending on the average configurations of vast numbers of individual entities. But averages are predictable because they are averages, irrespective of the type of government of the phenomena underlying them.

The New Epistemological Outlook. Scientific investigation does not lead to knowledge of the intrinsic nature of things. “Whenever we state the properties of a body in terms of physical quantities we are imparting knowledge of the response of various metrical indicators to its presence and nothing more”

But if a bodyis not acting according to strict causality, if there is an element of uncertainty as to the response of the indicators, we seem to have cut away the ground for this kind of knowledge. It is not predetermined what will be the reading of the weighing-machine if the body is placed on it, therefore the body has no definite mass; nor where it will be found an instant hence, therefore it has no definite velocity; nor where the rays now being reflected from it will converge in the microscope, therefore it has no definite position; and so on. It is no use answering that the body really has a definite mass, velocity, position, etc., which we are unaware of; that statement, if it means anything, refers to an intrinsic nature of things outside the scope of scientific knowledge. We cannot infer these properties with precision from anything that we can be aware of, because the breach of causality has broken the chain of inference. Thus our knowledge of the response of indicators to the presence of the body is non-existent; therefore we cannot assert knowledge of it at all. So what is the use of talking about it? The body which was to be the abstraction of all these (as yet unsettled) pointer readings has become superfluous in the physical world. That is the dilemma into which the old epistemology leads us as soon as we begin to doubt strict causality.

n phenomena on a gross scale this difficulty can be got round. A body may have no definite position but yet have within close limits an extremely probable position. When the probabilities are large the substitution of probability for certainty makes little difference; it adds only a negligible haziness to the world. But though the practical change is unimportant there are fundamental theoretical consequences. All probabilities rest on a basis of a priori probability, and we cannot say whether probabilities are large or small without having assumed such a basis. In agreeing to accept those of our calculated probabilities which are very high as virtually equivalent to certainties on the old scheme, we are as it were making our adopted basis of a priori probability a constituent of the world-structure — adding to the world a kind of symbolic texture that cannot be expressed on the old scheme.

The Principle of Indeterminacy. Thus far we have shown that modern physics is drifting away from the postulate that the future is predetermined, ignoring it rather than deliberately rejecting it. With the discovery of the Principle of Indeterminacy (p. 220) its attitude has become more definitely hostile.


In assessing whether the symbols which the physicist has scattered through the external world are adequate to predetermine the future, we must be on our guard against retrospective symbols. It is easy to prophesy after the event.

Volition. From the philosophic point of view it is of deep interest to consider how this affects the freedom of the human mind and spirit. A complete determinism of the material universe cannot be divorced from determinism of the mind. Take, for example, the prediction of the weather this time next year. The prediction is not likely ever to become practicable, but “orthodox” physicists are not yet convinced that it is theoretically impossible; they hold that next year’s weather is already predetermined. We should require extremely detailed knowledge of present conditions, since a small local deviation can exert an ever-expanding influence. We must examine the state of the sun so as to predict the fluctuations in the heat and corpuscular radiation which it sends us. We must dive into the bowels of the earth to be forewarned of volcanic eruptions which may spread a dust screen over the atmosphere as Mt. Katmai did some years ago. But further we must penetrate into the recesses of the human mind. A coal strike, a great war, may directly change the conditions of the atmosphere; a lighted match idly thrown away may cause deforestation which will change the rainfall and climate. There can be no fully deterministic control of inorganic phenomena unless the determinism governs mind itself. Conversely if we wish to emancipate mind we must to some extent emancipate the material world also. There appears to be no longer any obstacle to this emancipation.

… It seems that we must attribute to the mind power not only to decide the behaviour of atoms individually but to affect systematically large groups — in fact to tamper with the odds on atomic behaviour. This has always been one of the most dubious points in the theory of the interaction of mind and matter.

… To use an analogy — we have admitted an uncertainty which may take or spare human lives; but we have yet to find an uncertainty which may upset the expectations of a life-insurance company. Theoretically the one uncertainty might lead to the other, as when the fate of millions turned on the murders at Sarajevo. But the hypothesis that the mind operates through two or three key-atoms in the brain is too desperate a way of escape for us, and I reject it for the reasons already stated.

… There can be no unique probability attached to any event or behaviour; we can only speak of “probability in the light of certain given information”, and the probability alters according to the extent of the information. It is, I think, one of the most unsatisfactory features of the new quantum theory in its present stage that it scarcely seems to recognise this fact, and leaves us to guess at the basis of information to which its probability theorems are supposed to refer.

XV. Science and Mysticism

Possibly TBC.


…Starting from aether, electrons and other physical machinery we cannot reach conscious man and render count of what is apprehended in his consciousness. Conceivably we might reach a human machine interacting by reflexes with its environment; but we cannot reach rational man morally responsible to pursue the truth as to aether and electrons or to religion. …

… The physicist now regards his own external world in a way which I can only describe as more mystical, though not less exact and practical, than that which prevailed some years ago, when it was taken for granted that nothing could be true unless an engineer could make a model of it. There was a time when the whole combination of self and environment which makes up experience seemed likely to pass under the dominion of a physics much more iron-bound than it is now. That overweening phase, when it was almost necessary to ask the permission of physics to call one’s soul one’s own, is past. The change gives rise to thoughts which ought to be developed. Even if we cannot attain to much clarity of constructive thought we can discern that certain assumptions, expectations or fears are no longer applicable.

I think that the “success” theory of reasoning will not be much appreciated by the pure mathematician. For him reasoning is a heaven-sent faculty to be enjoyed remote from the fuss of external Nature. It is heresy to suggest that the status of his demonstrations depends on the fact that a physicist now and then succeeds in predicting results which accord with observation. Let the external world behave as irrationally as it will, there will remain undisturbed a corner of knowledge where he may happily hunt for the roots of the Riemann-Zeta function. …

… The accusation is often made that, by its neglect of aspects of human experience evident to a wider culture, physical science has been overtaken by a kind of madness leading it sadly astray. It is part of our contention that there exists a wide field of research for which the methods of physics suffice, into which the introduction of these other aspects would be entirely mischievous.

It will perhaps be said that the conclusion to be drawn from these arguments from modern science, is that religion first became possible for a reasonable scientific man about the year 1927. If we must consider that tiresome person, the consistently reasonable man, we may point out that not merely religion but most of the ordinary aspects of life first became possible for him in that year. Certain common activities (e.g. falling in love) are, I fancy, still forbidden him. If our expectation should prove well founded that 1927 has seen the final overthrow of strict causality by Heisenberg, Bohr, Born and others, the year will certainly rank as one of the greatest epochs in the development of scientific philosophy. But seeing that before this enlightened era men managed to persuade themselves that they had to mould their own material future notwithstanding the yoke of strict causality, they might well use the same modus vivendi in religion.

Scientific discovery is like the fitting together of the pieces of a great jig-saw puzzle; a revolution of science does not mean that the pieces already arranged and interlocked have to be dispersed; it means that in fitting on fresh pieces we have had to revise our impression of what the puzzle-picture is going to be like. One day you ask the scientist how he is getting on; he replies, “Finely. I have very nearly finished this piece of blue sky.” Another day you ask how the sky is progressing and are told, “I have added a lot more, but it was sea, not sky; there’s a boat floating on the top of it”. Perhaps next time it will have turned out to be a parasol upside down ; but our friend is still enthusiastically delighted with the progress he is making. The scientist has his guesses as to how the finished picture will work out; he depends largely on these in his search for other pieces to fit; but his guesses are modified from time to time by unexpected developments as the fitting proceeds. These revolutions of thought as to the final picture do not cause the scientist to lose faith in his handiwork, for he is aware that the completed portion is growing steadily. Those who look over his shoulder and use the present partially developed picture for purposes outside science, do so at their own risk.

The lack of finality of scientific theories would be a very serious limitation of our argument, if we had staked much on their permanence. …

If the scheme of philosophy which we now rear on the scientific advances of Einstein, Bohr, Rutherford and others is doomed to fall in the next thirty years, it is not to be laid to their charge that we have gone astray. Like the systems of Euclid, of Ptolemy, of Newton, which have served their turn, so the systems of Einstein and Heisenberg may give way to some fuller realisation of the world. But in each revolution of scientific thought new words are set to the old music, and that which has gone before is not destroyed T^ut refocussed. Amid all our faulty attempts at expression the kernel of scientific truth steadily grows; and of this truth it may be said — The more it changes, the more it remains the same thing.


This all seems very reasonable. I shall try to reduce my quotes above to make them an easier read without – hopefully – mangling their meaning too much. Please let me know if you think I have already gone too far, or if you have any good arguments against the views expressed above.

See Also

Eddington’s New Pathways in Science for an updated view.

Dave Marsay

%d bloggers like this: