What logical term or concept ought to be more widely known?

Various What scientific term or concept ought to be more widely known? Edge, 2017.

INTRODUCTION: SCIENTIA

Science—that is, reliable methods for obtaining knowledge—is an essential part of psychology and the social sciences, especially economics, geography, history, and political science. …

Science is nothing more nor less than the most reliable way of gaining knowledge about anything, whether it be the human spirit, the role of great figures in history, or the structure of DNA.

Contributions

As against others on:

(This is as far as I’ve got.)

Comment

I’ve grouped the contributions according to whether or not I think they give due weight to the notion of uncertainty as expressed in my blog. Interestingly Steven Pinker seems not to give due weight in his article, whereas he is credited by Nicholas G. Carr with some profound insights (in the first of the second batch). So maybe I am not reading them right.

My own suggestion would be Turing’s theory of ‘Morphogenesis’. The particular predictions seem to have been confirmed ‘scientifically’, but it is essentially a logical / mathematical theory. If, as the introduction suggests, science is “reliable methods for obtaining knowledge” then it seems to me that logic and mathematics are more reliable than empirical methods, and deserve some special recognition. Although, I must concede that it may be hard to tell logic from pseudo-logic, and that unless you can do so my distinction is potentially dangerous.

Morphogenesis

The second law of thermodynamics, and much common sense rationality,  assumes a situation in which the law of large numbers applies. But Turing adds to the second law’s notion of random dissipation a notion of relative structuring (as in gravity) to show that ‘critical instabilities’ are inevitable. These are inconsistent with the law of large numbers, so the assumptions of the second law of thermodynamics (and much else) cannot be true. The universe cannot be ‘closed’ in its sense.

Implications

If the assumptions of the second law seem to leave no room for free will and hence no reason to believe in our agency and hence no point in any of the contributions to Edge: they are what they are and we do what we do. But Pinker does not go so far: he simply notes that if things inevitably degrade we do not need to beat ourselves up, or look for scape-goats when things go wrong. But this can be true even if the second law does not apply. If we take Turing seriously then a seeming permanent status quo can contain the reasons for its own destruction, so that turning a blind eye and doing nothing can mean sleep-walking to disaster. Where Pinker concludes:

[An] underappreciation of the Second Law lures people into seeing every unsolved social problem as a sign that their country is being driven off a cliff. It’s in the very nature of the universe that life has problems. But it’s better to figure out how to solve them—to apply information and energy to expand our refuge of beneficial order—than to start a conflagration and hope for the best.

This would seem to follow more clearly from the theory of morphogenesis than the second law. Turing’s theory also goes some way to suggesting or even explaining the items in the second batch. So, I commend it.

Dave Marsay

 

 

Advertisements

Risks to scientists from mis-predictions

The recent conviction of six seismologists and a public official for reassuring the public about the risk of an earthquake when there turned out to be one raises many issues, mostly legal, but I want to focus on the scientific aspects, specifically the assessment and communication of uncertainty.

A recent paper by O’Hagan  notes that there is “wide recognition that the appropriate representation for expert judgements of uncertainty is as a probability distribution for the unknown quantity of interest …”.  This conflicts with UK best practice, as described by Spiegelhalter at understanding uncertainty. My own views have been formed by experience of potential and actual crises where evaluation of uncertainty played a key role.

From a mathematical perspective, probability theory is a well-grounded theory depending on certain axioms. There are plausible arguments that these axioms are often satisfied, but these arguments are empirical and hence should be considered at best as scientific rather than mathematical or ‘universally true’.  O’Hagan’s arguments, for example, start from the assumption that uncertainty is nothing but a number, ignoring Spiegelhalter’s ‘Knightian uncertainty‘.

Thus, it seems to me, that where there are rare critical decisions with a lack of evidence to support a belief in the axioms, one should recognize the attendant non-probabilistic uncertainty, and that failure to do so is a serious error, meriting some censure. In practice, one needs relevant guidance such as the UK is developing, interpreted for specific areas such as seismology. This should provide both guidance (such as that at understanding uncertainty) to scientists and material to be used in communicating risk to the public, preferably with some legal status. But what should such guidance be? Spiegelhalter’s is a good start, but needs developing.

My own view is that one should have standard techniques that can put reasonable bounds on probabilities, so that one has something that is relatively well peer-reviewed, ‘authorised’ and ‘scientific’ to inform critical decisions. But in applying any methods one should recognize any assumptions that have been made to support the use of those methods, and highlight them. Thus one may say that according to the usual methods, ‘the probability is p’, but that there are various named factors that lead you to suppose that the ‘true risk’ may be significantly higher (or lower). But is this enough?

Some involved in crisis management have noted that scientists generally seem to underestimate risk. If so, then even the above approach (and the similar approach of understanding uncertainty) could tend to understate risk. So do scientists tend to understate the risks pertaining to crises, and why?

It seems to me that one cannot be definitive about this, since there are, from a statistical perspective – thankfully – very few crises or even near-crises. But my impression is that could be something in it. Why?

As at Aquila, human and organisational factors seem to play a role, so that some answers seem to need more justification that others. Any ‘standard techniques’ would need take account of these tendancies. For example, I have often said that the key to good advice is to have a good customer, who desires an adequate answer – whatever it is – who fully appreciates the dangers of misunderstanding arising, and is prepared to invest the time in ensuring adequate communication. This often requires debate and perhaps role-playing, prior to any crisis. This was not achieved at Aquila. But is even this enough?

Here I speculate even more. In my own work, it seems to me that where a quantity such as P(A|B) is required and scientists/statisticians only have a good estimate of P(A|B’) for some B’ that is more general than B, then P(A|B’) will be taken as ‘the scientific’ estimate for P(A|B). This is so common that it seems to be a ‘rule of pragmatic inference’, albeit one that seems to be unsupported by the kind of arguments that O’Hagan supports. My own experience is that it can seriously underestimate P(A|B).

The facts of the Aquila case are not clear to me, but I suppose that the scientists made their assessment based on the best available scientific data. To put it another way, they would not have taken account of ad-hoc observations, such as amateur observations of radon gas fluctuations. Part of the Aquila problem seems to be that the amateur observations provided a warning which the population were led to discount on the basis of ‘scientific’ analysis. More generally, in a crisis, one often has a conflict between a scientific analysis based on sound data and non-scientific views verging on divination. How should these diverse views inform the overall assessment?

In most cases one can make a reasonable scientific analysis based on sound data and ‘authorised assumptions’, taking account of recognized factors. I think that one should always strive to do so, and to communicate the results. But if that is all that one does then one is inevitably ignoring the particulars of the case, which may substantially increase the risk. One may also want to take a broader decision-theoretic view. For example, if the peaks in radon gas levels were unusual then taking them as a portent might be prudent, even in the absence of any relevant theory. The only reason for not doing so would be if the underlying mechanisms were well understood and the gas levels were known to be simply consequent on the scientific data, thus providing no additional information. Such an approach is particularly indicated where – as I think is the case in seismology – even the best scientific analysis has a poor track record.

The bottom line, then, is that I think that one should always provide ‘the best scientific analysis’ in the sense of an analysis that gives a numeric probability (or probability range etc) but one needs to establish a best practice that takes a broader view of the issue in question, and in particular the limitations and potential biases of ‘best practice’.

The O’Hagan paper quoted at the start says – of conventional probability theory – that  “Alternative, but similarly compelling, axiomatic or rational arguments do not appear to have been advanced for other ways of representing uncertainty.” This overlooks Boole, Keynes , Russell and Good, for example. It may be timely to reconsider the adequacy of the conventional assumptions. It might also be that ‘best scientific practice’ needs to be adapted to cope with messy real-world situations. Aquila was not a laboratory.

See Also

My notes on uncertainty and on current debates.

Dave Marsay

NRC’s Assessing … Complex Models

Committee on Mathematical Foundations of Verification, Validation, and Uncertainty Quantification Board on Mathematical Sciences and Their Applications Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty Quantification (US) NRC, 2012

The team were tasked to “examine practices for VVUQ of large-scale computational simulations”. Such simulations are complicated. The title seems misleading in using the term ‘complex’. The summary seems like a reasonable consensus summary of the state of the art in its focus area, and of research directions, with no surprises. But the main body does provide some ammunition for those who seek to emphasise deeper uncertainty issues, considering mathematics beyond computation.

Summary

Principles

Highlighted principles include:

    1. A validation assessment is well defined only in terms of specified quantities of interest (QOIs) and the accuracy needed for the intended use of the model.
    2. A validation assessment provides direct information about model accuracy only in the domain of applicability that is “covered” by the physical observations employed in the assessment.

Comments

The notion of a model here would be something like ‘all swans are white’. The first principle suggests that we need tolerance for what is regarded as ‘white’. The second principle suggests that if we have only considered British swans, we should restrict the domain of applicability of the model.

In effect, the model is being set within a justification, much as the conclusion of a mathematical theorem is linked to axioms by the proof. This is contrary to much school science practice, which simply teaches models: we need to understand the (empirical) theory. Typically, when we read ‘all swans are white’ we should understand that it really only means ‘all British swans are white-ish’.

Swans are relatively simple. The only problem is our limited observations of them. Economics, for example, is more complex. The quantities of interest are controversial, as are the relevant observations. Such complex situations seem beyond the intended scope of this report.

Research Topics

  1. Development of methods that help to define the “domain of applicability” of a model, including methods that help quantify the notions of near neighbors, interpolative predictions, and extrapolative predictions.
  2. Development of methods to assess model discrepancy and other sources of uncertainty in the case of rare events, especially when validation data do not include such events.

Comments

These topics are easier if one has an overarching theory of which the model is a specialisation, whose parameters are to be determined. In such cases the ‘domain of applicability’ could be based on an established classifying schema, and uncertainty could be probabilistic, drawing on established probabilistic models. The situation is more challenging, with broader uncertainties, where there is no such ruling theory, as in climate science.

Recommendations

  1. An effective VVUQ [verification, validation and uncertainty quantification] education should encourage students to confront and reflect on the ways that knowledge is acquired, used, and updated.
  2. The elements of probabilistic thinking, physical-systems modeling, and numerical methods and computing should become standard parts of the respective core curricula for scientists, engineers, and statisticians.

Comments

Most engineers and statisticians will be working pragmatically, assuming some ruling theory that guides their work. This report seems most suitable for them. Ideally, scientists acting as science advisors would also be working in such a way. However, surprises do happen, and scientists working on science should be actively doubting any supposed ruling theory. Thus it is sometimes vital to know the difference between a situation where an agreed theory should be regarded as, for example, ‘fit for government work’, and where it is not, particularly where extremes of complexity or uncertainty call for a more principled approach. In such cases it is not obvious that uncertainty can be quantified. For example, how does one put a number on ‘all swans are white’ when one has not been outside Britain?

As well as using mathematics to work out the implications of a ruling theory in a particular case, one needs to be able to use different mathematics to work out the implications of a particular case for theory.

Introduction

This cites Savage,  but in his terms it is implicitly addressing complicated but ‘small’ worlds rather than more complex ‘large’ ones, such as that of interest to climate science.

Sources of Uncertainty and Error

The general issue is whether formal validation of models of complex systems is actually feasible. This issue is both philosophical and practical and is discussed in greater depth in, for example, McWilliams (2007), Oreskes et al. (1994), and Stainforth et al. (2007).

There is a need to make decisions … before a complete UQ analysis will be available. … This does not mean that UQ can be ignored but rather that decisions need to be made in the face of only partial knowledge of the uncertainties involved. The “science” of these kinds of decisions is still evolving, and the various versions of decision analysis are certainly relevant.

Comment

 It seems that not all uncertainty is quantifiable, and that one needs to be able to make decisions in the face of such uncertainties.

In the case of ‘all swans are white’ the uncertainty arises because we have only looked in Britain. It is clear what can be done about this, even if we have no basis for assigning a number.

In the case of economics, even if we have a dominant theory we may be uncertainty because, for example, it has only been validated against the British economy for the last 10 years. We might not be able to put a number on the uncertainty, but it might be wise to look for more general theories, covering a broader range of countries and times, and then see how our dominant theory is situated within the broader theory. This might give us more confidence in some conclusions from the theory, even if we cannot assign a number. (One also needs to consider alternative theories.)

Model Validation and Prediction

Comparison with reality

In simple settings validation could be accomplished by directly comparing model results to physical measurements for the QOI  …

Findings

  1. Mathematical considerations alone cannot address the appropriateness of a model prediction in a new, untested setting. Quantifying uncertainties and assessing their reliability for a prediction require both statistical  and subject-matter reasoning.
  2. The idea of a domain of applicability is helpful for communicating the conditions for which predictions (with uncertainty) can be trusted. However, the mathematical foundations have not been established for defining such a domain or its boundaries.

Comment

I take the view that a situation that can be treated classically is not complex, only at most complicated. Complex situations may always contain elements that are surprising to us. Hence bullet 1 applies to complex situations too. The responsibility for dealing with complexities seems to be shifted from the mathematicians to the subject matter experts (SMEs). But if one is dealing with a new ‘setting’ one is dealing with dynamic complexity, of the kind that would be a crisis if the potential impact were serious. In such situations it may not be obvious which subject is the relevant one, or there may be more than one vital subject. SMEs may be unused to coping with complexity or with collaboration under crisis or near-crisis conditions. For example, climate science might need not only climatologists but also experts in dealing with uncertainty.

My view is that sometimes one can only assess the relevance and reliability of a model in a particular situation, that one needs particular experts in this, and that mathematics can help – but it is a different mathematics.

Next Steps in Practice, Research, and Education for Verification, Validation, and Uncertainty Quantification

 For validation, “domain of applicability” is recognized as an important concept, but how one defines this domain remains an open question. For predictions, characterizing how a model differs from reality, particularly in extrapolative regimes, is a pressing need. … advances in linking a model to reality will likely broaden the domain of applicability and improve confidence in extrapolative prediction.

Comment

As Keynes pointed out, in some complex situations one can only meaningfully predict in the short-term. Thus in early 2008 economic predictions were not in error, as short-term predictions. It is just that the uncertain long-term arrived. What is needed, therefore, is some long-term forecasting ability. This cannot be a prediction, in the sense of having a probability distribution, but it might be an effective anticipation, just as one might have anticipated that there were non-white swans in foreign parts. Different mathematics is needed.

My Summary

The report focusses on the complicatedness of the models. But I find it hard to think of a situation where one needs a complicated model and the actual situation is not complex. Usually, for example, the situation is ‘reflexive’ because the model is going to be used to inform interaction with the world, which will change it. Thus, the problem as I see it is how to model a situation that is uncertain and possibly complex. While the report does give some pointers it does not develop them.

The common sense view of modelling is that a model is based on observations. In fact – as the report notes – it tends to be based on observations plus assumptions, which are refined into a model, often iteratively. But the report seems to suppose that one’s initial assumptions will be ‘true’. But one can only say that the model fits one’s observations, not that it will continue to fit all possible observations, unless one can be sure that the situation is very constrained. That is, one cannot say that a scientific theory is unconditionally and absolutely true, but only ‘true to’ ones observations and assumptions.

The report is thus mainly for those who have a mature set of assumptions which they wish to refine, not those who expect the unexpected. It does briefly mention ‘rare events’, but it sees these as outliers on a probability distribution whereas I would see these more as challenging assumptions.

See Also

The better nature blog provides a view of science that is complimentary to this report.

My notes on science and uncertainty.

Dave Marsay

The End of a Physics Worldview (Kauffman)

Thought provoking, as usual. This video goes beyond his previous work, but in the same direction. His point is that it is a mistake to think of ecologies and economies as if they resembled the typical world of Physics. A previous written version is at npr, followed by a later development.

He builds on Kant’s notion of wholes, noting (as Kant did before him) that the existence of such wholes is inconsistent with classical notions of causality.  He ties this in to biological examples. This complements Prigogine, who did a similar job for modern Physics.

Kauffman is critical of mathematics and ‘mathematization’, but seems unaware of the mathematics of Keynes and Whitehead. Kauffman’s view seems the same as that due to Bergson and Smuts, which in the late 1920s defined ‘modern science’. To me the problem behind the financial crash lies not in science or mathematics or even in economics, but in the brute fact that politicians and financiers were wedded to a pre-modern (pre-Kantian) view of economics and mathematics. Kauffman’s work may help enlighten them on the need, but not on the potential role for modern mathematics.

Kauffman notes that at any one time there are ‘adjacent possibles’ and that in the near future they may come to pass, and that – conceptually – one could associate a probability distribution with these possibilities. But as new possibilities come to pass new adjacent possibilities arise. Kauffman supposes that it is not possible to know what these are, and hence one cannot have a probability distribution, much of information theory makes no sense, and one cannot reason effectively. The challenge, then, is to discover how we do, in fact, reason.

Kauffman does not distinguish between short and long run. If we do so then we see that if we know the adjacent possible then our conventional reasoning is appropriate in the short-term, and Kauffman’s concerns are really about the long-term: beyond the point at which we can see the potential possibles that may arise. To this extent, at least, Kauffman’s post-modern vision seems little different from the modern vision of the 1920s and 30s, before it was trivialized.

Dave Marsay

How to live in a world that we don’t understand, and enjoy it (Taleb)

N Taleb How to live in a world that we don’t understand, and enjoy it  Goldstone Lecture 2011 (U Penn, Wharton)

Notes from the talk

Taleb returns to his alma mater. This talk supercedes his previous work (e.g. Black Swan). His main points are:

  • We don’t have a word for the opposite of fragile.
      Fragile systems have small probability of huge negative payoff
      Robust systems have consistent payoffs
      ? has a small probability of a large pay-off
  • Fragile systems eventually fail. ? systems eventually come good.
  • Financial statistics have a kurtosis that cannot in practice be measured, and tend to hugely under-estimate risk.
      Often more than 80% of kurtosis over a few years is contributed by a single (memorable) day.
  • We should try to create ? systems.
      He calls them convex systems, where the expected return exceeds the return given the expected environment.
      Fragile systems are concave, where the expected return is less than the return from the expected situation.
      He also talks about ‘creating optionality’.
  • He notes an ‘action bias’, where whenever there is a game like the stock market then we want to get involved and win. It may be better not to play.
  • He gives some examples.

 Comments

Taleb is dismissive of economists who talk about Knightian uncertainty, which goes back to Keynes’ Treatise on Probability. Their corresponding story is that:

  • Fragile systems are vulnerable to ‘true uncertainty’
  • Fragile systems eventually fail
  • Practical numeric measures of risk ignore ‘true uncertainty’.
  • We should try to create systems that are robust to or exploit true uncertainty.
  • Rather than trying to be the best at playing the game, we should try to change the rules of the game or play a ‘higher’ game.
  • Keynes gives examples.

The difference is that Taleb implicitly suppose that financial systems etc are stochastic, but have too much kurtosis for us to be able to estimate their parameters. Rare events are regarded as rare events generated stochastically. Keynes (and Whitehead) suppose that it may be possible to approximate such systems by a stochastic model for a while, but the rare events denote a change to a new model, so that – for example – there is not a universal economic theory. Instead, we occasionally have new economics, calling for new stochastic models. Practically, there seems little to choose between them, so far.

From a scientific viewpoint, one can only asses definite stochastic models. Thus, as Keynes and Whitehead note, one can only say that a given model fitted the data up to a certain date, and then it didn’t. The notion that there is a true universal stochastic model is not provable scientifically, but neither is it falsifiable. Hence according to Popper one should not entertain it as a view. This is possibly too harsh on Taleb, but the point is this:

Taleb’s explanation has pedagogic appeal, but this shouldn’t detract from an appreciation of alternative explanations based on non-stochastic uncertainty.

 In particular:

  • Taleb (in this talk) seems to regard rare crisis as ‘acts of fate’ whereas Keynes regards them as arising from misperceptions on the part of regulators and major ‘players’. This suggests that we might be able to ameliorate them.
  • Taleb implicitly uses the language of probability theory, as if this were rational. Yet his argument (like Keynes’) undermines the notion of probability as derived from rational decision theory.
      Not playing is better whenever there is Knightian uncertainty.
      Maybe we need to be able to talk about systems that thrive on uncertainty, in addition to convex systems.
  • Taleb also views the up-side as good fortune, whereas we might view it as an innovation, by whatever combination of luck, inspiration, understanding and hard work.

See also

On fat tails versus epochs.

Dave Marsay

The Logic of Scientific Discovery

K.R. Popper The Logic of Scientific Discovery 1980 Routledge A review. (The last edition has some useful clarifications.) See new location.

Dave Marsay

Systemism: the alternative to individualism and holism

Mario Bunge Systemism: the alternative to individualism and holism Journal of Socio-Economics 29 (2000) 147–157

“Three radical worldviews and research approaches are salient in social studies: individualism, holism, and systemism.”

[Systemism] “is centered in the following postulates:
1. Everything, whether concrete or abstract, is a system or an actual or potential component of a system;
2. systems have systemic (emergent) features that their components lack, whence
3. all problems should be approached in a systemic rather than in a sectoral fashion;
4. all ideas should be put together into systems (theories); and
5. the testing of anything, whether idea or artifact, assumes the validity of other items, which are taken as benchmarks, at least for the time being.”

Thus systemism resembles Smuts’ Holism. Bunge uses the term ‘holism’ for what Smuts terms wholism: the notion that systems should be subservient to their ‘top’ level, the ‘whole’. This usage apart, Bunge appears to be saying something important. Like Smuts, he notes the systemic nature of mathematics is distinction to those who note the tendency to apply mathematical formulae thoughtlessly, as in some notorious financial mathematics

Much of the main body is taken up with the need for micro-macro analyses and the limitations of piece-meal approaches, something familiar to Smuts and |Keynes. On the other hand he says: “I support the systems that benefit me, and sabotage those that hurt me.” without flagging up the limitations of such an approach in complex situations. He even suggests that an interdisciplinary subject such as biochemistry is nothing but the overlap of the two disciplines. If this is the case, I find it hard to grasp their importance. I would take a Kantian view, in which bringing into communion two disciplines can be more than the sum of the parts.

In general, Bunge’s arguments in favour of what he calls systemism and Smuts called holism seem sound, but it lacks the insights into complexity and uncertainty of the original.

See also

Andy Denis’ response to Bunge adds some arguments in favour of Holism. It’s main purpose, though, is to contradict Bunge’s assertion that laissez-faire is incompatible with systemism. It is argued that a belief in Adam Smith’s invisible hand could support laissez faire. It is not clear what might constitute grounds for such a belief. (My own view is that even a government that sought to leverage the invisible hand would have a duty to monitor the workings of such and hand, and to take action should it fail, as in the economic crisis of 2007/8. It is now clear how politics might facilitate this.)

Also my complexity.

Dave Marsay