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Abstract

Al and Al-aided planning are currently at their best
where one has a large, but not too large, number of
possible actions that interact with a well defined
‘problem space’ in well defined ways. Many
applications are not quite like this. The last few years
have seen a surge of interest in the 'Bayesian’
approach to uncertainty, but this has not been as
fruitful as had been hoped. This paper adapts the
framework of game theory to represent some
common types of uncertainty, even where there is no
gaming element in the problem. This framework
gives different results from a conventiond utility-
maximization approach. Familiar route-planning
examples are used to show that the new game-
theoretic framework can be applied to a significant
range of problems where utility maximization has
significant defects. The implications of this are
briefly discussed.

Introduction
At its simplest, the Al planning problem is to find a
sequence of actions that will take the planning world
from a defined initial condition to a given goal state. It
is essentially a puzzle, with the challenge generaly
provided by the great number of possible aternative
plans. A typical example is route planning. This is
often idealized into a simple puzzle, of finding a route
that is reasonabl€e’, in some sense. However, real-world
planning often involves a significant element of
uncertainty, such as uncertain weather or traffic. There
is not yet a consensus within the Al planning
community on how these uncertainties should be
handled. The probabilistic (Bayesian) approach has
been widely studied, but there seems to be no single
approach that is widely applicable. This was discussed

in the summer 1999 Al Magazine special issue on
Bayesian Techniques, e.g. (Haddawy, 1999).

This article gives some general insights into
uncertainty in planning, and suggests that the
framework and methods of game theory can be used,
even where the assumptions of game theory - that there
is a game - do not hold. It aso argues that this novel
approach to planning is more widely applicable than
those based on conventional ’'Bayesian’ utility
maximization.

Gametheory

The conventional game theory formulation is where
each player has a number of possible actions, and each
set of choices of actions by the players has a
consequence, whose ‘utility’ is typically different for
each player. The conventiona strategy is for each
player to choose that action for which the worst
outcome over all the other player’s assignments is best,
or least bad (von Neumann & Morgenstern 1944). This
framework can be used to capture uncertainties in the
situation, such as the weather, that are not due to an
‘'opponent’, and the solution that game theory gives is
often satisfactory. However, game theory does not
currently play any wider explicit role in planning.
(Russdll & Norvig 1995)

Route Planning example

Consider a route planning problem, where we need to
plan aroute for use tomorrow morning. We classify the
potential weather as ‘fair’, ‘wet’ or 'foggy’, say. For
example, fair weather is any weather that does not
impede us. We want to reach our destination at an
agreed time, and to be able to start our journey as late
aspossible - so that we do not have to get up too early.

Thetimes that we allow for a given journey depend on the route and the weather as shown below:

Fair Wet
Motorway 100 120
Major roads 120 150
Minor roads 150 190

Fog Worst Average
200 200 140
180 180 150
170 190 170

Timesin minutes

These notional figures are based on a situation in which we can find a shorter route by using minor roads. The better
roads have the benefit of higher speeds, but this is lost in bad weather. In this example the minor roads can be
subject to partia flooding. The example is contrived to illustrate some of the main issues, but is intended to be
representative’. The average is based on a situation where each weather condition has been judged to be equally

likely.



Using the motorway minimizes the expected
journey time. Thisis the Bayesian route. But to be sure
of arriving on time those following the Bayesian route
must alow 200 minutes, in case of fog. If we plan a
route by major roads we can start 20 minutes later,
since the worst case delay is less. This is the plan that
we would choose if we thought that the weather was
playing a game against us.

Suppose now that we are sure that when we get up
we will know the weather. If the weather turns out to
be fine we can aways go by motorway, thus not
wasting time. If we also plan a minor road route, to be
used in case of fog, we can save a further 10 minutes,
since the worst case where we choose our route
knowing the actual weather is 170 minutes, a saving of
30 minutes, 15%, over the Bayesian plan. This
corresponds to determining the worst-case utility from
playing a given game, not selecting an actual play.

This smple example demonstrates that the
framework of game theory can be used to select a plan
that is clearly better than the Bayesian plan. Moreover,
there is no need to estimate the probabilities of the
particular conditions, and the plan will be much more
stable from day to day, only changing when we judge
that the possibility of fog, say, can be discounted.

It might seem from this that we have a counter-
example to Bayes decision theory (Bayes 1763).
Actually, we have ssimply shown that his preconditions
do not apply. Planning is not like gambling. In this
paper the term ’'Bayesian’ is used to describe the
application of methods based on Bayes' theory without
regard to the preconditions.

General approach

Notation
A generdization of the above approach is now
developed using a pseudo-code approach based on
(Russell & Norvig 1995). As a convenience, SUM( , )
isfirst defined by:

function SUM(FUNCTION, space)
/I Thisis acomment
sum ~ ZERO
for each element in space
sum — sum + FUNCTION(element))
return sum

Thus SUM( , ) has variables FUNCTION and space
and returns the sum of FUNCTION( ) over space.
MIN( , ) is defined similarly, but taking the minimum
value. Functions are shown upper-case, sets are
underlined. Sets of functions will be upper-case
underlined. If we have ’'subset O set’, say, this is
sometimes represented by the function
'SUBSET: set - {0, 1}". Other functions are denoted
similarly, where it is not appropriate to define their
bodies.

We assume that we have a 'given’ set of situations,
situation, a set of possible plans, plan, and some figure
of meritt for plans in specific dtuations:
'FOM: plan x situation — value’. This is the same

formalization as in game theory, and generalizes that of
Bayesian decision theory. This figure of merit could
reflect, for example, 'time to be allowed’, 'fuel to be
consumed’ and 'risk of accident’. Here we are not
concerned with how to derive a figure of merit, but
only how to use it in planning. In a deterministic
situation we simply maximize the figure of merit. But
how should we compare plans when the situation is
uncertain?

Evaluation
According to Bayesians, we should estimate the
probabilities 'P: situation — [0,1]". Then BAYESIAN-
UTILITY(,) sumsthe 'value' of the plan in a situation
times the probability of the situation, over all
Situations, thus:

function BAYESIAN-UTILITY (plan, P)
/I P is aBayesian probability
return SUM((FOM (plan, )*P()), situation)

The route planning example shows that this is not
always optimal. It disregards Bayes' preconditions, so
why not do the same for game theory? Consider a set
of possible situations in a particular case, possible, as if
they were chosen by an opponent. Then we have:

function POSSIBILISTIC-UTILITY (plan, possible)
return MIN(FOM(plan, ), possible)

This is simpler than the Bayesian version, and the
example has shown that it can give correct results
where the Bayesian one fails significantly. But there
are familiar examples where the converse is true, such
asgambling. To dea with those suppose that we have a
generalized probability, GPROBABILITY( ), (eg,
PROBABILITY) and a corresponding evaluator
GUTILITY( , ) (eg, BAYESIAN-UTILITY).
Consider a new entity, ’'possible probability
assignments’, 'ppa 0 GPROBABILITY’. Then thisisa
genuine generalization, since a singleton ppa
corresponds to a unique (generalized) probability and a
ppa in which each situation maps into {0,1}
corresponds to a unique set of possibilities. It can thus
deal with a’real’ route planning problem where even on
a particular journey there is still an element of
subjective probability in which roads will be busy. So
this extension is more like the ’product of the parts
than the simple sum.

The corresponding evaluator is

function EU(plan, PPA)
/I PPA is a possible probability assignment
return MIN(GUTILITY (plan, ), PPA)

It may be we have no means to evauate
GUTILITY(,) directly. In these cases we can generate
a representative set of deterministic test cases, in effect
a’'simulation’. For example, if each uncertain element is
a simple binary 'yes or 'no’, as in road open or closed,
one can use (informally):



function SAMPLE_CASE(P)
/I P isaprobability function
for each element in situation
part(element) — 'RAND() < P (element)’
deterministic_situation — PROD(part, situation)
return deterministic_situation

In the familiar Monte-Carlo method one averages
the deterministic utilities to estimate the Bayesian
utility. For different utilities such as EU( , ) one simply
uses the appropriate function, in this case MIN(, ).

Plan Refinement
There will often be many potential plans that could be
evaluated. One often needs a heuristic to rapidly
identify a relatively small set of candidate plans. An
important feature of EU( , ) is that we can find the set
of worst-case situations with the following general
heuristic :

function WORST_CASE(plan, PPA)
best —« EU(plan, PPA)
worst_cases — NULL
for each situation in situation
if EU(plan, {situation}) == best
then worst_cases — worst_cases O { situation}
return worst_cases

Above, the term '{situation}’ denotes the singleton set
containing ’'situation’. This evaluator can be used to
improve a plan using a given a set of planners,
PLANNER (for example, containing the Bayesian
planner) asfollows:

function REFINE(plan, PPA)
/I NOT optimised in any sense
best value — EU(plan, PPA)
for each PLANNER in PLANNER do
for each problem in WORST_CASE(plan, PPA) do
candidate plan — PLANNER(problem)
value — EU(candidate plan, PPA)
if value > best_value then do
plan — candidate plan
best value — value

return plan

Thisisthen iterated in the usual way:

function IMPROVE (plan, PPA)
loop do
old plan — plan
plan —« REFINE(plan, PPA)
until (plan == old_plan)
/I or one could terminate earlier
return plan

This is the familiar worst-case heurigtic. In the
route planning example, fog’ is the worst case, so one

considers the 'minor road’ plan. This route is worse for
‘wet’ weather, so one looks for a plan that is good in
fog’ and 'wet’. This is 'magjor roads, as obtained
previoudly.

Note that the method has reduced the number of
situations and plans that have to be considered. We did
not even need to evaluate the Bayesian route. Thisisin
contrast to the Bayesian approach, where at least the
Bayesian route has to be evaluated for every condition.
In general we will look for a domain-specific
HEURISTIC(plan, PPA) (possibly independent of
plan) to reduce the number of situations that have to be
considered. This will be essential where PPA is very
large or infinite. In practice we may have to use an
approximate HEURISTIC, so that for a plan, pl, under
consideration,

EU(pl, PPA) O EU(plan, HEURISTIC(pl, PPA).
When using an approximation it will be a useful
safeguard to validate the iterated plan against the whole
PPA. Hence the use of an approximation need only
serve to facilitate the search without invalidating the
result.

Should we consider the iterated plan to be a good
one? Where the Bayesian plan is considered to be
reasonable, one approach is to consider a plan to be
acceptable if it is not much worse than the Bayesian
plan in terms of the Bayesian criterion. For problems
like route planning, this will be the case provided that
the uncertain conditions are not too restrictive and the
route network is not too sparse But other planning
problems may have more critical dependencies.

Planning in a Game-Theoretic

Framework

In game theory, there are normaly only a relatively
few possible actions, and they are normally 'given’. In
planning there are potentialy a huge number of
possible plans (e.g., routes) and (as in many read-life
games) the problem is to generate candidate plans for
evaluation. This creates complications, but they are not
insurmountable.

Assignment Spaces
We need a way of describing a space of possible plans
and their relationships to possible outcomes that can be
used before the plans, outcomes and uncertainties have
been identified. The description of such a space could
clearly be quite complex. To be able to generate and
evaluate plans we need a pragmatic way forward. Most
current notions of generalized probability, including
comparative probability (von Neumann & Morgenstern
1944) and imprecise probability (Walley 1991) can be
represented by constraints on Bayesian probability
assignments. Thus the exposition can be simplified by
supposing that our ’possible probability assignments
take this form. This allows us to represent scenarios,
such as in the route planning case, where any given
situation can be represented by Bayesian probabilities,
but we do not know which situation will actually occur.
We may be able to say that we have a 95% chance of
arriving on time if we use a given route in the wet, but
we dont yet know what the weather will be like



tomorrow morning.

If the constraints on values are linear (as in
comparative or imprecise probabilities) then the
resultant space is non-empty (provided the constraints
are consistent) and forms the inside of a convex
polyhedron. Such a space can be relatively compactly
described by giving the vertices. The whole space is
simply the convex hull of the vertices. Walley (Walley
1991, 3.6) has generalized this, to show that
‘previsions’ that avoid 'sure loss’ are the lower envelope
of the set of 'extreme points’ of 'dominating linear
previsions. This can be used to identify 'good’ plans.

This 'assignment space’ approach can be used with
the probabilities being probabilities of success of
actions. We then maximize the worst case probability
of success. Alternatively, the assignments could be of
the usage of resources that relate to overall utility.

In a straightforward application, a vertex will
typically correspond to a particular combination of
factors such as 'weather’ and 'time of day’. This could
be used directly if the values can simply be interpol ated
between extreme values. If not, it is necessary to insert
intermediate conditions until we have a reasonable
approximation.

The dependent variables could relate to every
possible situation individualy., but one would
normally seek some compactness. For example in a
route planning example one could classify road
elements and associate common measures (such as
length) with them. The condition-dependent parameters
could then be used with the road-element valuesto give
overall resource usage. For example, for a condition
'dry weather, night’ one could have a list of notional
speeds against road type. Thus the examples presented
above may al be dealt with by natural assignment
spaces. Plans are evaluated and refined as describe
above.

An assignment space could also be used to record
the space of ’'base’ probabilities to be used in a
Bayesian net (D’Ambroise 1999). However such a net
is not useful, since the preconditions for practical
updating do not hold". An alternative approach to plan
generation is therefore required.

Plan generation

Plan generation typically depends on domain-
dependent heuristics. However, there are some general
observations that can be made, that lead to improved
plans

A simple way to generate more plans from an
existing set of candidatesisto split them into fragments
and recombine. This is often a satisfactory heuristic,
provided that the initial set of plans is sufficiently
diverse. In route planning this approach can often

! Typical rules for updating of Bayesian nets
depend on both Bayes' rule and Bayes' observation that
the probability of one or other of two digoint
possibilities is the sum of their probabilities (in effect,
‘probabilities sum to 1). Their generalizations (Walley
1991) are too imprecise to give efficient updating, even
in our simple example.

generate a good choice of routes to be evaluated, but it
is not 'directed, and hence not efficient unless
evaluation is cheap.

Now, consider three routes. one good in the
morning rush, one good in the afternoon rush, and one
a good compromise. Looking only at vertices or even
a ‘point’ probability assignments we may never find
the compromise. A common approach is to plan against
conditions that are averaged over the day. But, since
the rush periods are relatively short, this will tend to
find the overall quickest route under good conditions,
which may not be the best compromise. '‘Bayesian’
planning is clearly not appropriate under these
conditions.

An obvious heuristic, at least for route planning, is
TEST_CASE( ), which bresks a situation into
elements (such as the states of the individual roads), for
each element finds the worst case over the possible
probability assignments, PPA, and then reconstitutes
the generalized probability for the overall situation.

function TEST_CASE(PPA)
for each element in situation
TMP(element) ) — WORST (PPA|element)
GPROB (gituation) — PROD(TMP (), situation)
return GPROB

Here, 'PPA|element’ denotes the set of probability
assignments, PPA, restricted to 'element’. PROD( , )
denotes the product over the set, like SUM( , ).
WORST (element, , ) will typically be MIN( , ) or
MAX( , ), depending on the element.

In terms of route planning, this will give a good
compromise route if there is one. This is typica of
many current Al planning problems, where there is
generaly a good plan, with Al technology being used
to speed up the search. However, in some cases it may
be that there is no such compromise route. One may
then need to consider more complex plans than 'use
route X', such as observing the traffic at a motorway
junction before committing to the rest of the route.
Furthermore, close attention should be given to the
‘given’ figure of merit, to make sure that it is valid.
These aspects are beyond the scope of this paper,
athough the evaluation and refinement approaches still
apply.

Currently, Bayesian planners are often not
practical. Hence the TEST_CASE( , ) cannot be used.
SAMPLE_CASE() (above) can be used, though. The
genera approach is practical in a small problem such
as the route example, where there are only three
possible wesather conditions, but is obvioudy limited.
What if one is travelling a long way and wants to
consider the result of possible accidents?

Performance
The main aim in this paper is in establishing the correct
criteriafor evaluating plans, and showing how to select
good plans. The details of the actual planner will be
very domain-dependent, and would normally
incorporate domain-dependent heuristics, so al one can
do in a general way is to show that existing planners



can be re-used within the 'new’ concepts.

In some cases, though, the approach outlined above
will actually give an optimal plan. If the utilities are
monotonic, so that the extremes are at the possibilistic
vertices, then this method will give a definite best plan.
Even where one has more complex utilities, there are
tests that can be used to show that the result is
‘reasonable’ in some absolute sense, and not just the
best of those considered. If one has a Bayesian plan,
and if the process described gives a plan that is not
significantly worse than the Bayesian plan according to
the Bayesian criterion, then the plan is clearly
absolutely reasonable. The reason for this is the
Bayesian plays a role as a 'benchmark’. If one simply
has a collection of plans with no benchmark, there is no
way to establish absolute performance.

Requirements
It is not envisaged that the techniques envisaged here
will be incorporated into speciaist planners for every
domain. Instead, one will have speciaist tools that act
as Oracles, used within a larger planning process, as
described above. However this implies certain
capabilities on the part of the specialist tools:

e A tool (planner) to accept notional worst-case
conditions (even if not physicaly feasible -
e.g. tracks may simultaneously slow down
vehicles that are susceptible to dust as well as
those susceptible to mud.)

e A tool (eg., simulator) to evaluate any given
route against a specified condition. (This
might be deterministicc, Monte-Carlo or
probabilistic.)

MicroSoft’s familiar AutoRoute route illustrates the
issues. One can define speed on each class of road, and
thus can plan against either a particular condition
(weather and traffic) or a notional worst case condition.
Ideally, we would want more types, for example to
indicate routes that are susceptible to flooding or fog,
but the principleisthere.

AutoRoute can also be used (with 'snap routing’). to
evaluate a given route. It also provides the ability to
block selected areas. This could be used as a means of
checking for robustness, but it would not be practical to
do this manually. AutoRoute also has the ability to
generate new routes using fragments of existing routes,
combining them where they cross. It can thus
potentially generate a large number of routes to be
evaluated. The main limitation of AutoRoute is that it
does not currently accept timely updates on relevant
data from, say, TrafficMaster PLC's TrafficMaster
system.

In some cases one might have two or more tools
that do a similar job, but have different strengths or
specializations. Combining such tools may be thought
of as reducing uncertainty. The requirements called for
above are clearly necessary to enable tools with
different specializations to be combined. For example,
if one tool knows about the effects of flooding on roads
and the other knows about traffic patterns (e.g., knows
when school terms are) then we need a similar process
to use the tools to generate a reasonable route.

Related Work and Discussion

This new approach essentiadly complements
mainstream work on deterministic planning and
Bayesian planning - e.g. (Blythe 1999, Haddawy,
1999). It brings to planning more general insights on
making decisions concerning an uncertain future
(Smith 1776, Bernstein 1996). Previous work has
shown the limitations of 'Bayesian’ probability in other
domains (Keynes 1921, Smith 1961, Soros 1996,
Skyrms 2000, Walley 1991), including strategic
defence planning (Enthoven & Smith 1971), but not for
the type of planning that is typically the subject of Al
planning.

(Cheeseman 1985) provides a benchmark view in
defence of the use of conventional probability in Al in
general, and the adequacy of 'Bayesian’ probability in
Al is now generaly taken amost for granted (e.g.,
Russell & Norvig 1995, Blythe 1999). This paper is the
first to give an accessible planning example of the
inadequacy of 'Bayesian probability’. It is also the first
to adapt the methods of generalized probability
(Walley 1991) to planning, and to put these methods in
the context of game theory.

In the wider context, this paper is unique in that
elsewhere the inadequacy of the Bayesian approach is
accounted for either solely by the variability in the
situation or by the effect of other human decision-
makers (Bernstein 1996). What has been shown here is
that the Bayesian approach is not appropriate when we
wish to plan actions that facilitate further plans.

The Bayesian approach is appropriate where the
assumptions of Bayes decision-theory hold?. Where
one has Bayesian probabilities, one has to make a
definite plan now for future enactment, and one wishes
to maximize some long-run utility, averaged over many
plans. In the route-planning example there are two
problems. Firstly, the appropriate utility is not the
‘Bayesian’ norm. Secondly, we have the opportunity to
change the route when we see what the actual weather
is. But in these examples the underlying 'objective’
probabilities may still be 'Bayesian'.

The game-theoretic framework is powerful, but it
needs to be shown that it does not exclude other
desirable ways of extending conventional planning.
Here, following (Bernstein 1996), three extensions are
considered: robustness analysis and coping with
domains that exhibit 'non-linearity’ or reflexivity’.

Robustness analysis estimates how robust a plan
might be to actions becoming unavailable, for example
to roads being blocked. This could be deterministic or
Bayesian. To include this within the framework the
utility would need to be modified. For example, one
might take the cost of travelling from A to B as taking
into account possible detours. (This could be done
using SAMPLE_CASE() to test self-repairing plans).

Non-linearity is where costs do not simply
accumulate. For example, if | am planning to skirt a

2 By Bayesian | mean like Bayes, but ignoring the
preconditions. There is no conflict between Adam
Smith and Bayes.



town while the morning rush hour is building up, the
effects of any early delays can become greatly
magnified. When going through a large city around
rush hour, the likely distribution of delays can have
two distinct ‘'modes: before and after the rush hour
peak. This non-linearity complicates the derivation of
utility, but that does not invalidate the framework.

Another problem for decision-making generaly is
reflexivity’, where the plan may affect the situation.
For example, where we are planning repeated convoys
aong a route, so that the existing traffic may get
displaced. We may be looking to judge the capacity of
nearby roads to absorb displaced traffic, and hence how
much traffic is left to hold up our convoys. Again, this
makes the 'outcome’ difficult to judge, and invalidates
the simple notion of 'expected delay’, but does not
invalidate the framework. We can still judge the 'uiltity’
of a plan in a given situation. Thus the extension
proposed to planning practice does not preclude other
desirable extensions.

Conclusions

Al Planning is relatively straightforward when dealing
with a simple 'puzzle’ world, where the main challenge
is computational cost. Uncertainty introduces a new
dimension, which has been widely studied from a
Bayesian point of view, but with limited success. This
paper has described a conceptual framework for
uncertainty in planning that re-uses the formalism of
game-theory to situations where the source of
uncertainty, such as the weather, is not 'against us. A
basic method, a kind of search strategy, has been
described to validate the feasibility of using the
framework on practical planning problems subject to
the type of uncertainty described. Some opportunities
for domain-specific tuning have a so been indicated.

Simple examples relating to route-planning have
been described, showing how this type of uncertainty
arises naturally in route planning problems, and is not
adequately addressed by '‘Bayesian planning’. For the
simple examples it is straightforward and, | claim,
natural to solve the corresponding planning problem.
For more complex problems, such as those where the
power of Al planning tools is required, a genera
heuristic has been described for leveraging existing
planning practises and tools, provided that they meet
some simple and intuitive criteria of configurability.

Bayesian planning is often not practical. The
proposed method alows one to take plans from
existing planners and select the best. It is more natural
and practica than Bayesian planning. A Bayesian
planner, if available, would provide a good ’reference’
plan, but, as the examples have shown, does not always
provide a very satisfactory plan.

It has been argued that the use of this framework is
consistent with other ways of extending conventional
planning to overcome recognised deficiencies. The
main problem with the method is in generating good
‘compromise’ plans. But what makes a good
compromise is inevitably very domain-dependent, and
so no planning method could satisfactorily handle real-
world uncertainties for all types of planning problem.

The new approach described here can be used to
evaluate plans against possible scenarios, to select the
more robust plans. It will not do worse than the
conventional approach. However, more work needs to
be done to understand the factors that contribute to
non-Bayesian uncertainty. Doing better than the
conventional approach may not be enough. Specific
domains need to be studied, to see if the plan
generation method described here is satisfactory. The
most important work required is to find reliable
methods of identifying problem domains, and
situations within domains, where the deficiencies of the
‘Bayesian’ approach are significant and the new
approach will remedy or ameliorate them.
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